Advertisement

Mineralogy and Petrology

, Volume 110, Issue 2–3, pp 333–360 | Cite as

Calcite and dolomite in intrusive carbonatites. I. Textural variations

  • Anton R. Chakhmouradian
  • Ekaterina P. Reguir
  • Anatoly N. Zaitsev
Original Paper

Abstract

Carbonatites are nominally igneous rocks, whose evolution commonly involves also a variety of postmagmatic processes, including exsolution, subsolidus re-equilibration of igneous mineral assemblages with fluids of different provenance, hydrothermal crystallization, recrystallization and tectonic mobilization. Petrogenetic interpretation of carbonatites and assessment of their mineral potential are impossible without understanding the textural and compositional effects of both magmatic and postmagmatic processes on the principal constituents of these rocks. In the present work, we describe the major (micro)textural characteristics of carbonatitic calcite and dolomite in the context of magma evolution, fluid-rock interaction, or deformation, and provide information on the compositional variation of these minerals and its relation to specific evolutionary processes.

Keywords

Calcite Dolomite Dolomitization MgCO3 Strontianite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and St. Petersburg State University, Russia (3.38.690.2013, including Geomodel Center). The instrumentation used for data collection was supported by the NSERC. We would like to thank Taseko Mines Ltd. and Rare Element Resources for providing access to their Aley and Bear Lodge properties (respectively). Expert guidance of Jörg Keller at Kaiserstuhl, Jim Clark at Bear Lodge, and Pete Modreski at Iron Hill is most gratefully acknowledged. Most of the samples examined in the present work were collected by authors from outcrop and drill core, but some were loaned to us by the Royal Ontario Museum (Toronto, Canada), Natural History Museum (London, UK), or donated by Francis Ö. Dudás, Meghan A. Moore and Alexey Rukhlov. We would also like to thank Lia N. Kogarko and Felix V. Kaminsky for their constructive comments on the earlier version of this paper, Johann G. Raith for his keen editorial eye, as well as Vincent Vertolli and David Smith for arranging the museum loans.

References

  1. Andersen T, Austrheim H (1991) Temperature-HF fugacity trends during crystallization of calcite carbonatite magma in Fen complex, Norway. Min Mag 55:81–94CrossRefGoogle Scholar
  2. Andreasen GH, Delaney ML (2000) Lithologic controls on calcite recrystallization in Cenozoic deep-sea sediments. Mar Geol 163:109–124CrossRefGoogle Scholar
  3. Anovitz LM, Essene EJ (1987) Phase equilibria in the system CaCO3–MgCO3–FeCO3. J Petrol 28:389–414CrossRefGoogle Scholar
  4. Azbej T, Szabo C, Bodnar RJ, Dobosi G (2006) Genesis of carbonate aggregates in lamprophyres from the northeastern Transdanubian Central Range, Hungary: magmatic or hydrothermal origin? Mineral Petrol 88:479–497CrossRefGoogle Scholar
  5. Baker MB, Wyllie PJ (1992) High-pressure apatite solubility in carbonate-rich liquids: implications for mantle metasomatism. Geochim Cosmochim Acta 56:3409–3422CrossRefGoogle Scholar
  6. Barnhoorn A, Bystricky M, Burlini L, Kunze K (2004) The role of recrystallisation on the deformation behaviour of calcite rocks: large strain torsion experiments on Carrara marble. J Struct Geol 26:885–903CrossRefGoogle Scholar
  7. Barrière M (1976) Flowage differentiation: limitation of the “Bagnold effect” to the narrow intrusions. Contrib Mineral Petrol 55:139–145CrossRefGoogle Scholar
  8. Bestmann M, Karsten Kunze K, Matthews A (2000) Evolution of a calcite marble shear zone complex on Thassos Island, Greece: microstructural and textural fabrics and their kinematic significance. J Struct Geol 22:1789–1807CrossRefGoogle Scholar
  9. Boettcher AL, Robertson JK, Wyllie PJ (1980) Studies in synthetic carbonatite systems: solidus relationships for CaO-MgO-CO2-H2O to 40 kbar and CaO-MgO-SiO2-CO2-H2O to 10 kbar. J Geophys Res 85:6937–6943CrossRefGoogle Scholar
  10. Brantley SL (2008) Kinetics of mineral dissolution. In: Brantley SL, Kubicki JD, White AF (eds) Kinetics of water-rock interaction. Springer, New York, pp 151–210CrossRefGoogle Scholar
  11. Brice WR, Chang LLY (1973) Subsolidus phase relations in aragonite-type carbonates. III. The systems MgCO3-CaCO3-BaCO3, MgCO3-CaCO3-SrCO3, and MgCO3-SrCO3-BaCO3. Am Mineral 58:979–985Google Scholar
  12. Buckley HA, Wooley AR (1990) Carbonates of the magnesite-siderite series from four carbonatite complexes. Min Mag 54:413–418CrossRefGoogle Scholar
  13. Bühn B, Schneider G, Dulski P, Rankin AH (2003) Fluid-rock interaction during progressive migration of carbonatitic fluids, derived from small-scale trace element and Sr, Pb isotope distribution in hydrothermal fluorite. Geochim Cosmochim Acta 67:4577–4595CrossRefGoogle Scholar
  14. Buob A (2003) The system CaCO3-MgCO3: experiments and thermodynamic modeling of the trigonal and orthorhombic solid solutions at high pressure and temperature. Unpubl PhD Thesis, Swiss Fed Inst Technol, Zürich, 172 ppGoogle Scholar
  15. Burlini L, Bruhn D (2005) High-strain zones: laboratory perspectives on strain softening during ductile deformation. In: Bruhn D, Burlini L (eds) High-strain zones: structure and physical properties. Geol Soc London, Spec Publ, 245:1–24Google Scholar
  16. Busch JP, van der Pluijm BA (1995) Calcite textures, microstructures and rheological properties of marble mylonites in the Bancroft shear zone, Ontario, Canada. J Struct Geol 17:677–688CrossRefGoogle Scholar
  17. Byrnes AP, Wyllie PJ (1981) Subsolidus and melting relations for the join CaCO3–MgCO3 at 10 kb. Geochim Cosmochim Acta 45:321–328CrossRefGoogle Scholar
  18. Carlson WD (1980) The calcite-aragonite equilibrium: effects of Sr substitution aid anion orientational disorder. Am Mineral 65:1252–1262Google Scholar
  19. Carlson WD, Rosenfeld JL (1981) Optical determination of topotactic aragonite-calcite growth kinetics: metamorphic implications. J Geol 89:615–638CrossRefGoogle Scholar
  20. Casquet C, Pankhurst RJ, Galindo C, Rapela C, Fanning CM, Baldo E, Dahlquist J, González Casado JM, Colombo F (2008) A deformed alkaline igneous rock–carbonatite complex from theWestern Clymene Ocean? Precambrian Res 165:205–220CrossRefGoogle Scholar
  21. Castor SB (2008) The Mountain Pass rare-earth carbonatite and associated ultrapotassic rocks, California. Can Mineral 46:779–806CrossRefGoogle Scholar
  22. Chakhmouradian AR, Zaitsev AN (2004) Afrikanda: an association of ultramafic, alkaline and alkali-silica-rich carbonatitic rocks from mantle-derived melts. In: Wall F, Zaitsev AN (eds) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province. Min Soc, London, pp 247–291Google Scholar
  23. Chakhmouradian AR, Mumin AH, Demény A, Elliott B (2008) Postorogenic carbonatites at Eden Lake, Trans-Hudson Orogen (northern Manitoba, Canada): geological setting, mineralogy and geochemistry. Lithos 103:503–526CrossRefGoogle Scholar
  24. Chakhmouradian AR, Böhm CO, Demény A, Reguir EP, Hegner E, Creaser RA, Halden NM, Yang P (2009) “Kimberlite” from Wekusko Lake, Manitoba: actually a diamond-indicator-bearing dolomite carbonatite. Lithos 112S:347–357CrossRefGoogle Scholar
  25. Chakhmouradian AR, Reguir EP, Kressall RD, Crozier J, Pisiak L, Sidhu R, Yang P (2015a) Carbonatite-hosted niobium deposit at Aley, northern British Columbia (Canada): mineralogy, geochemistry and petrogenesis. Ore Geol Rev 64:642–666CrossRefGoogle Scholar
  26. Chakhmouradian AR, Reguir EP, Couëslan C, Yang P (2015b) Calcite and dolomite in intrusive carbonatites. II. Trace-element variations. Mineral Petrol (this volume)Google Scholar
  27. Chang LLY (1971) Subsolidus phase relations in the aragonite-type carbonatites. Am Mineral 56:1660–1673Google Scholar
  28. Chang LLY, Brice WR (1972) Subsolidus phase relations in aragonite-type carbonates: II. The systems CaCO3-SrCO3-PbCO3, and CaCO3-BaCO3-PbCO3. Am Mineral 57:165–168Google Scholar
  29. Chen W, Simonetti A (2012) In-situ determination of major and trace elements in calcite and apatite, and U–Pb ages of apatite from the Oka carbonatite complex: insights into a complex crystallization history. Chem Geol 353:151–172CrossRefGoogle Scholar
  30. Cherniak DJ (1997) An experimental study of strontium and lead diffusion in calcite, and implications for carbonate diagenesis and metamorphism. Geochim Cosmochim Acta 61:4173–4179CrossRefGoogle Scholar
  31. Chou HT, Chou SH, Hsiau SS (2014) The effects of particle density and interstitial fluid viscosity on the dynamic properties of granular slurries in a rotating drum. Powder Technol 252:42–50CrossRefGoogle Scholar
  32. Cooper AF (1979) Petrology of ocellar lamprophyres from western Otago, New Zealand. Petrol 20:139–163CrossRefGoogle Scholar
  33. Coto B, Martos C, Pena JA, Rodríguez R, Pastor G (2012) Effects in the solubility of CaCO3: experimental study and model description. Fluid Phase Equilib 324:1–7CrossRefGoogle Scholar
  34. Currie KL, Knutson J, Temby PA (1992) The Mud Tank carbonatite complex, central Australia—an example of metasomatism at mid-crustal levels. Contrib Mineral Petrol 109:326–339CrossRefGoogle Scholar
  35. Dalton JA, Presnal DC (1998) The continuum of primary carbonatitic–kimberlitic melt compositions in equilibrium with lherzolite: data from the system CaO–MgO–Al2O3–SiO2–CO2 at 6 GPa. J Petrol 39:1953–1964Google Scholar
  36. Dalton JA, Wood BJ (1993) The compositions of primary carbonate melts and their evolution through wallrock reactions in the mantle. Earth Planet Sci Lett 119:511–525CrossRefGoogle Scholar
  37. Dasgupta R, Hirschmann RR, Stalker K (2006) Immiscible transition from carbonate-rich to silicate-rich melts in the 3 GPa melting interval of eclogite + CO2 and genesis of silica-undersaturated ocean island lavas. J Petrol 47:647–671CrossRefGoogle Scholar
  38. Dawson JB, Hinton RW (2003) Trace-element content and partitioning in calcite, dolomite and apatite in carbonatite, Phalaborwa, South Africa. Min Mag 67:921–930CrossRefGoogle Scholar
  39. De Bresser JHP, Urai JL, Olgaard DL (2005) Effect of water on the strength and microstructure of Carrara marble axially compressed at high temperature. J Struct Geol 27:265–281CrossRefGoogle Scholar
  40. De Capitani C, Peters T (1981) The solvus in the system MnCO3-CaCO3. Contrib Mineral Petrol 76:394–400CrossRefGoogle Scholar
  41. Demény A, Sitnikova MA, Karchevsky PI (2004) Stable C and O isotope compositions of carbonatite complexes of Kola Alkaline Province: phoscorite-carbonatite relationships and source compositions. In: Wall F, Zaitsev AN (eds) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province. Min Soc, London, pp 407–431Google Scholar
  42. D’Orazio M, Innocenti F, Tonarini S, Doglioni C (2007) Carbonatites in a subduction system: the Pleistocene alvikites from Mt. Vulture (southern Italy). Lithos 98:313–334CrossRefGoogle Scholar
  43. Doroshkevich AG, Viladkar SG, Ripp GS, Burtdeva M (2009) Hydrothermal REE mineralization in the Amba Dongar carbonatite complex, Gujarat, India. Can Mineral 47:1105–1116CrossRefGoogle Scholar
  44. Downes P, Demény A, Czuppon G (2012) Hydrothermal REE-mineralisation and C-O stable isotope geochemistry of the Cummins Range Carbonatite Complex, Kimberley region, Western Australia. 34th Int Geol Congress, Progr AbstrGoogle Scholar
  45. Dresen G, Evans B, Olgaard DL (1998) Effect of quartz inclusions on plastic flow in marble. Geophys Res Lett 25:1245–1248CrossRefGoogle Scholar
  46. Eby GN, Lloyd FE, Woolley AR (2009) Geochemistry and petrogenesis of the Fort Portal, Uganda, extrusive carbonatite. Lithos 113:785–800CrossRefGoogle Scholar
  47. Emmons E (1842) Geology of New York part 2. Geology of 2nd district, 135–164Google Scholar
  48. Faiziev AR, Iskandarov FS, Gafurov FG (1998) Mineralogical and petrogenetic characteristics of carbonatites of Dunkeldykskii alkali massif (eastern Pamirs). Proc Russ Mineral Soc 127(3):54–57 (in Russ)Google Scholar
  49. Fan Y (2011) Shear-induced segregation in dense granular mixtures. Unpubl PhD Thesis, Univ Minnesota, 139 ppGoogle Scholar
  50. Félix G, Thomas N (2004) Relation between dry granular flow regimes and morphology of deposits: formation of levées in pyroclastic deposits. Earth Planet Sci Lett 221:197–213CrossRefGoogle Scholar
  51. Fisler DK, Cygan RT (1999) Diffusion of Ca and Mg in calcite. Am Mineral 84:1392–1399CrossRefGoogle Scholar
  52. Fredrich JT, Evans B, Wong T-F (1989) Micromechanics of the brittle to plastic transition in Carrara marble. J Geophys Res 94:4129–4145CrossRefGoogle Scholar
  53. Genge MJ, Price GD, Jones AP (1995) Molecular dynamics simulations of CaCO3 melts to mantle pressures and temperatures: implications for carbonatite magmas. Earth Planet Sci Lett 131:225–238CrossRefGoogle Scholar
  54. Ghent ED, Erdmer P, Archibald DA, Stout SZ (1996) Pressure—temperature and tectonic evolution of Triassic lawsonite—aragonite blueschists from Pinchi Lake, British Columbia. Can J Earth Sci 33:800–810CrossRefGoogle Scholar
  55. Goldsmith JR, Heard HC (1961) Subsolidus phase relations in the system CaCO3-MgCO3. J Geophys Res 69:45–74Google Scholar
  56. Goldsmith JR, Graf DL, Witters J, Northrup DA (1962) Studies in the system CaCO3-MgCO3-FeCO3: (1) Phase relations; (2) A method for major-element spectrochemical analysis; (3) Compositions of some ferroan dolomites. J Geophys Res 70:659–688Google Scholar
  57. Harmer RE, Gittings J (1997) The origin of dolomitic carbonatites: field and experimental constraints. J Afr Earth Sci 25:5–28CrossRefGoogle Scholar
  58. Hirth G, Tullis J (1994) The brittle-plastic transition in experimentally deformed quartz aggregates. J Geophys Res 99:11713–11747CrossRefGoogle Scholar
  59. Huang W-L (2003) Synthetic polycrystalline aragonite to calcite transformation kinetics: experiments at pressures close to the equilibrium boundary. Mineral Petrol 79:243–258CrossRefGoogle Scholar
  60. Humphreys ER, Bailey K, Hawkesworth CJ, Wall F, Najorka J, Rankin AH (2010) Aragonite in olivine from Calatrava, Spain—evidence for mantle carbonatite melts from > 100 km depth. Geology 38:911–914CrossRefGoogle Scholar
  61. Hurai V, Huraiová M, Milovský R, Luptáková J, Konečný P (2013) High-pressure aragonite phenocrysts in carbonatite and carbonated syenite xenoliths within an alkali basalt. Am Mineral 98:1074–1077CrossRefGoogle Scholar
  62. Irving AJ, Wyllie PJ (1975) Subsolidus and melting relationships for calcite, magnesite and the join CaCO3–MgCO3 to 36 kb. Geochim Cosmochim Acta 39:35–53CrossRefGoogle Scholar
  63. Jones AP, Genge M, Carmody L (2013) Carbonate melts and carbonatites. Rev Mineral Geochem 75:289–322CrossRefGoogle Scholar
  64. Kaminsky F, Wirth R, Matsyuk S, Schreiber A, Thomas R (2009) Nyerereite and nahcolite inclusions in diamond: evidence for lower-mantle carbonatitic magmas. Min Mag 73:797–816CrossRefGoogle Scholar
  65. Kapustin YL (1987) Characteristic features of the development of magnesian metasomatism in early calcite carbonatites. Proc Russ Mineral Soc 116(1):28–43 (in Russ)Google Scholar
  66. Keiter M, Tomaschek F, Schmid-Beurmann P, Ballhaus C, Löns J (2008) Calcite needles in marbles on Syros (Cyclades, Greece)—indicators for an obscured aragonite foliation and static exhumation. Geotect Res 95(1):81–82CrossRefGoogle Scholar
  67. Keller J (1989) Extrusive carbonatites and their significance. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 70–88Google Scholar
  68. Kennedy LA, White JC (2001) Low-temperature recrystallization in calcite: mechanisms and consequences. Geologija 29:1027–1030CrossRefGoogle Scholar
  69. Kjarsgaard B, Peterson T (1991) Nephelinite-carbonatite liquid immiscibility at Shombole Volcano, East Africa: petrographic and experimental evidence. Mineral Petrol 43:293–314CrossRefGoogle Scholar
  70. Kogarko LN, Henderson CMB, Pacheco H (1995) Primary Ca-rich carbonatite magma and carbonate-silicate-sulfide liquid immiscibility in the upper mantle. Contrib Mineral Petrol 121:267–274CrossRefGoogle Scholar
  71. Konev AA, Vorob’ev EI, Lazebnik KA (1996) Mineralogy of the Murun alkaline massif. Siberian Branch Russ Acad Sci, Novosibirsk, Russia, 221 pp (in Russian)Google Scholar
  72. Kynicky J, Chakhmouradian AR, Xu C, Brtnicky M, Vašinová Galiová M, Králova V (2013) Evolution of rare-earth mineralized carbonatites at Lugiin Gol and Omnot Olgii, southern Mongolia. Crit Metals Workshop Program with Abstracts 21Google Scholar
  73. Le Bas MJ, Ba-bttat MAO, Taylor RN, Milton JA, Windley BF, Evins PM (2004) The carbonatite-marble dykes of Abyan Province, Yemen Republic: the mixing of mantle and crustal carbonate materials revealed by isotope and trace element analysis. Mineral Petrol 82:105–135CrossRefGoogle Scholar
  74. Le Maitre RW (2002) Igneous rocks: a classification and glossary of terms: recommendations of International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge University Press, 236 ppGoogle Scholar
  75. Lee W-J, Wyllie PJ (1998a) Petrogenesis of carbonatite magmas from mantle to crust, constrained by the system CaO–(MgO+FeO*)–(Na2O+K2O)–(SiO2+Al2O3+TiO2)–CO2. J Petrol 39:495–517CrossRefGoogle Scholar
  76. Lee W-J, Wyllie PJ (1998b) Processes of crustal carbonatite formation by liquid immiscibility and differentiation, elucidated by model systems. J Petrol 39:2005–2013CrossRefGoogle Scholar
  77. Lee W-J, Wyllie PJ, Rossman GR (1994) CO2-rich glass, round calcite crystals, and no liquid immiscibility in the system CaO-SiO2-CO2 at 2.5 GPa. Am Mineral 79:1135–1144Google Scholar
  78. Litasov KD, Ohtani E (2009) Solidus and phase relations of carbonatite peridotite in the system CaO–Al2O3–MgO–SiO2–Na2O–CO2 to the lower mantle depths. Phys Earth Planet Inter 177:46–58CrossRefGoogle Scholar
  79. Litasov KD, Shatskiy A, Ohtani E, Yaxley G (2013) Solidus of alkaline carbonatite in the deep mantle. Geologija 41:79–82CrossRefGoogle Scholar
  80. Melgarejo JC, Costanzo A, Bambi ACJM, Gonçalves AO, Neto AB (2012) Subsolidus processes as a key factor on the distribution of Nb species in plutonic carbonatites: the Tchivira case, Angola. Lithos 152:187–201CrossRefGoogle Scholar
  81. Mitchell RH (1997) Carbonate-carbonate immiscibility, neighborite and potassium iron sulphide in Oldoinyo Lengai natrocarbonatite. Min Mag 61:779–789CrossRefGoogle Scholar
  82. Mitchell RH (2015) Primary and secondary niobium mineral deposits associated with carbonatites. Ore Geol Rev 64:626–641Google Scholar
  83. Mitchell RH, Kjarsgaard BA (2011) Experimental studies of the system Na2CO3-CaCO3-MgF2 at 0.1 GPa: implications for the differentiation and low-temperature crystallization of natrocarbonatite. J Petrol 52:1265–1280CrossRefGoogle Scholar
  84. Mitchell RJ, Hardy MC, Preuss M, Tin S (2004) Development of γ’ morphology in P/M rotor disc alloys during heat treatment. Superalloys 361–370Google Scholar
  85. Moore M, Chakhmouradian AR, Mariano AN, Sidhu R (2015) Evolution of rare-earth mineralization in the Bear Lodge carbonatite, Wyoming: mineralogical and isotopic evidence. Ore Geol Rev 64:499–521CrossRefGoogle Scholar
  86. Olinger DA (2012) Characterization and genetic relation of carbonatite and associated alkaline silicate rocks of Northwest Bull Hill, Bear Lodge Mountains, Northeast Wyoming. Unpubl MSc Thesis, Texas Tech University, 314 ppGoogle Scholar
  87. Onuonga IO, Fallick AE, Bowden P (1997) The recognition of meteoric-hydrothermal and supergene processes in volcanic carbonatites, Nyanza Rift, western Kenya, using carbon and oxygen isotopes. J Afr Earth Sci 25:103–113CrossRefGoogle Scholar
  88. Otto JW, Wyllie PJ (1993) Relationships between silicate melts and carbonate-precipitating melts in CaO-MgO-SiO2-CO2-H2O at 2 kbar. Mineral Petrol 48:343–365CrossRefGoogle Scholar
  89. Paterson MS, Wong T-f (2005) Experimental rock deformation—the brittle field. Springer, 347 ppGoogle Scholar
  90. Persikov ES, Bukhtiyarov PG (2013) Specifics of the mechanisms of carbonate melting at high fluid pressures in the system C–O–H–Ar. Exp Geochem 1(2):18 (in Russ)Google Scholar
  91. Pieri M, Burlini L, Kunze K, Stretton I, Olgaard DL (2001) Rheological and microstructural evolution of Carrara marble with high shear strain: results from high-temperature torsion experiments. J Struct Geol 23:1393–1413CrossRefGoogle Scholar
  92. Platt RG, Woolley AR (1990) The carbonatites and fenites of Chipman Lake, Ontario. Can Mineral 28:241–250Google Scholar
  93. Puustinen K (1974) Dolomite exsolution textures in calcite from the Siilinjärvi carbonatite complex, Finland. Bull Geol Soc Finl 46:151–159Google Scholar
  94. Reeder RJ, Dollase WA (1989) Structural variation in the dolomite-ankerite solid-solution series: an X-ray, Mössbauer, and TEM study. Am Mineral 74:1159–1167Google Scholar
  95. Reguir EP, Chakhmouradian AR, Halden NM, Yang P, Zaitsev AN (2008) Early magmatic and reaction-induced trends in magnetite from the carbonatites of Kerimasi, Tanzania. Can Mineral 46:879–900CrossRefGoogle Scholar
  96. Reguir EP, Chakhmouradian AR, Pisiak LK, Halden NM, Yang P, Xu C, Kynicky J, Couëslan CG (2012) Trace-element composition and zoning in clinopyroxene- and amphibole-group minerals: implications for element partitioning and evolution of carbonatites. Lithos 128–131:27–45CrossRefGoogle Scholar
  97. Renner J, Siddiqi G, Evans B (2007) Plastic flow of two-phase marbles. J Geophys Res 112, B07203CrossRefGoogle Scholar
  98. Roberts D, Zwaan KB (2007) Marble dykes emanating from marble layers in an amphibolites-facies, ultiply-deformed carbonate succession, Troms, northern Norway. Geol Mag 144:883–888CrossRefGoogle Scholar
  99. Ruberti E, Enrich GER, Gomes CB, Comin-Chiaramonti P (2008) Hydrothermal REE fluorcarbonate mineralization at Barra do Itapirapuã, a multiple stockwork carbonatite, southern Brazil. Can Mineral 46:901–914CrossRefGoogle Scholar
  100. Ryabchikov ID, Hamilton DL (1993) Interaction of carbonate-phosphate melts with mantle peridotites at 20–35 kbar. South Afr J Geol 96:143–148Google Scholar
  101. Rybacki E, Paterson MS, Wirth R, Dresen G (2003) Rheology of calcite–quartz aggregates deformed to large strain in torsion. J Geophys Res 108(B2):8–1–8–24CrossRefGoogle Scholar
  102. Schubnel A, Walker E, Thompson BD, Fortin J, Gue’guen Y, Young RP (2006) Transient creep, aseismic damage and slow failure in Carrara marble deformed across the brittle-ductile transition. Geophys Res Lett 33:L17301CrossRefGoogle Scholar
  103. Schultz LN, Dideriksen K, Müter D, Hakim SS, Stipp SLS (2013) Early stage Ostwald ripening of submicrometer calcite. Min Mag 77:2168Google Scholar
  104. Schürmann LW, Horstmann UE, Cloete CC (1997) Geochemical and stable isotope patterns in altered volcaniclastic and intrusive rocks of the Kruidfontein Carbonatite Complex, South Africa. J Afr Earth Sci 25:77–101CrossRefGoogle Scholar
  105. Simonetti A, Bell K, Viladkar SG (1995) Isotopic data from the Amba Dongar Carbonatite Complex, west-central India: evidence for an enriched mantle source. Chem Geol 122:185–198CrossRefGoogle Scholar
  106. Snoke W, Tullis J, Todd VR (2014) Fault-related rocks: a photographic atlas. Princeton University Press 629 ppGoogle Scholar
  107. Stoppa F, Schiazza M (2013) An overview of monogenetic carbonatitic magmatism from Uganda, Italy, China and Spain: volcanologic and geochemical features. J South Am Earth Sci 41:140–159CrossRefGoogle Scholar
  108. Subbotin VV, Subbotina GF (2000) Accessory lueshite and vigezzite from the Sebljavr carbonatites. Proc Murmansk State Tech Univ 3(2):273–284 (in Russ)Google Scholar
  109. Tappe S, Foley SF, Jenner GA, Heaman LM, Kjarsgaard BA, Romer RL (2006) Genesis of ultramafic lamprophyres and carbonatites at Aillik Bay, Labrador: a consequence of incipient lithospheric thinning beneath the North Atlantic craton. J Petrol 47:1261–1315CrossRefGoogle Scholar
  110. Terent’ev AV, Kunts AF (2001) Modifications of carbonate rocks under thermal and hydrothermal influences. J Inst Exp Mineral 10:90–91; available at http://library.iem.ac.ru/exper/v10_1/90-92.pdf
  111. Theye T, Seidel E (1993) Uplift-related retrogression historyof aragonite marbles in Western Crete (Greece). Contrib Mineral Petrol 114:349–356CrossRefGoogle Scholar
  112. Thompson RN, Smith PM, Gibson SA, Mattey DP, Dickin AP (2002) Ankerite carbonatite from Swartbooisdrif, Namibia: the first evidence for magmatic ferrocarbonatite. Contrib Mineral Petrol 143:377–395CrossRefGoogle Scholar
  113. Tichomirowa M, Whitehouse MJ, Gerdes A, Götze J, Schulz B, Belyatsky BV (2013) Different zircon recrystallization types in carbonatites caused by magma mixing: evidence from U–Pb dating, trace element and isotope composition (Hf and O) of zircons from two Precambrian carbonatites from Fennoscandia. Chem Geol 353:173–198CrossRefGoogle Scholar
  114. Torró L, Villanova C, Castillo M, Campeny M, Gonçalves AO, Melgarejo JC (2012) Niobium and rare earth minerals from the Virulundo carbonatite, Namibe, Angola. Min Mag 76:393–409CrossRefGoogle Scholar
  115. Tripathi A, Khakhar DV (2011) Rheology of binary granular mixtures in the dense flow regime. Phys Fluids 23:113302-1–113302-12CrossRefGoogle Scholar
  116. van der Veen AH (1965) Calcite-dolomite intergrowths in high-temperature carbonate rocks. Am Min 50:2070–2077Google Scholar
  117. Veksler IV, Nielsen TFD, Sokolov SV (1998) Mineralogy of crystallized melt inclusions from Gardiner and Kovdor ultramfic alkaline complexes: implications for carbonatite genesis. J Petrol 39:2015–2031CrossRefGoogle Scholar
  118. Voloshin AV, Subbotin VV, Pakhomovskii YA, Bakhchisaraitsev AY, Yamnova NA, Pushcharovskii DY (1990) Belkovite Ba3(Nb, Ti)6(Si2O7)2O12 new mineral from carbonatite of the Vuoriyarvi massif (Kola Peninsula). Dokl Akad Nauk SSSR 315:1218–1220 (in Russ)Google Scholar
  119. Wall F, Mariano AF (1996) Rare earth minerals in carbonatites: a discussion centred on the Kangankunde Carbonatite, Malawi. In: Jones AP, Wall F, Williams CT (eds) Rare earth minerals: chemistry, origin and ore deposits. Min Soc, London, pp 193–225Google Scholar
  120. Wall F, Le Bas MJ, Srivastava RK (1993) Calcite and carbocernaite exsolution and cotectic textures in a Sr, REE-rich carbonatite dyke from Rajasthan, India. Min Mag 57:495–513CrossRefGoogle Scholar
  121. Wallace ME, Green DH (1988) An experimental determination of primary carbonatite magma composition. Nature 335:343–346CrossRefGoogle Scholar
  122. Wyllie PJ, Lee W-J (1998) Model system controls on conditions for formation of magnesiocarbonatite and calciocarbonatite magmas from the mantle. J Petrol 39:1885–1893CrossRefGoogle Scholar
  123. Xu C, Campbell IH, Allen CM, Huang Z, Qi L, Zhang H, Zhang G (2007) Flat rare earth element patterns as an indicator of cumulate processes in the Lesser Qinling carbonatites, China. Lithos 95:267–278CrossRefGoogle Scholar
  124. Xu C, Kynicky J, Chakhmouradian AR, Li X, Song W (2015) A case example of the importance of multi-analytical approach in deciphering carbonatite petrogenesis in South Qinling orogen: Miaoya rare-metal deposit, central China. Lithos 227:107–121CrossRefGoogle Scholar
  125. Zaitsev AN (1996) Rhombohedral carbonates from carbonatites of the Khibina massif, Kola peninsula, Russia. Can Mineral 34:453–468Google Scholar
  126. Zaitsev AN, Chakhmouradian AR (2002) Calcite-amphibole-clinopyroxene rock from the Afrikanda complex, Kola Peninsula, Russia: mineralogy and a possible link to carbonatites. II Oxysalt minerals. Can Mineral 40:103–120CrossRefGoogle Scholar
  127. Zaitsev AN, Polezhaeva L (1994) Dolomite-calcite textures in early carbonatites of the Kovdor ore deposit, Kola peninsula, Russia: their genesis and application for calcite-dolomite geothermometry. Contrib Mineral Petrol 115:339–344CrossRefGoogle Scholar
  128. Zaitsev AN, Wall F, Le Bas MJ (1998) REE-Sr-Ba minerals from the Khibina carbonatites, Kola Peninsula, Russia: their mineralogy, paragenesis and evolution. Min Mag 62:225–250CrossRefGoogle Scholar
  129. Zaitsev AN, Demény A, Sindern S, Wall F (2002) Burbankite group minerals and their alteration in rare earth carbonatites — source of elements and fluids (evidence from C–O and Sr–Nd isotopic data). Lithos 62:15–33Google Scholar
  130. Zaitsev AN, Sitnikova MA, Subbotin VV, Fernández-Suárez J, Jeffries TE (2004) Sallanlatvi complex – a rare example of magnesite and siderite carbonatites. In: Wall F, Zaitsev AN (eds) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province. Min Soc, London, pp 201–245Google Scholar
  131. Zaitsev AN, Keller J, Spratt J, Perova EN, Kearsley A (2008) Nyererite-pirssonite-calcite-shortite relationships in altered natrocarbonatites, Oldoinyo Lengai, Tanzania. Can Mineral 46:843–860CrossRefGoogle Scholar
  132. Zaitsev AN, Williams CT, Jeffries TE, Strekopytov S, Moutte J, Ivashchenkova OV, Spratt J, Petrov SV, Wall F, Seltmann R, Borozdin AP (2014) Rare earth elements in phoscorites and carbonatites of the Devonian Kola Alkaline Province, Russia: examples from Kovdor, Khibina, Vuoriyarvi and Turiy Mys complexes. Ore Geol Rev 61:204–225CrossRefGoogle Scholar
  133. Zurevinski SE, Mitchell RH (2004) Extreme compositional variation of pyrochlore-group minerals at the Oka carboatite complex, Quebec: evidence of magma mixing? Can Mineral 42:1159–1168CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Anton R. Chakhmouradian
    • 1
  • Ekaterina P. Reguir
    • 1
  • Anatoly N. Zaitsev
    • 2
    • 3
  1. 1.Department of Geological SciencesUniversity of ManitobaWinnipegCanada
  2. 2.Department of MineralogySt. Petersburg State UniversitySt. PetersburgRussia
  3. 3.Department of Earth SciencesNatural History MuseumLondonUK

Personalised recommendations