Mineralogy and Petrology

, Volume 109, Issue 5, pp 519–530 | Cite as

U-Pb-Th geochronology of monazite and zircon in albitite metasomatites of the Rožňava-Nadabula ore field (Western Carpathians, Slovakia): implications for the origin of hydrothermal polymetallic siderite veins

  • V. Hurai
  • J.-L. Paquette
  • O. Lexa
  • P. Konečný
  • I. Dianiška
Original Paper


Sodic metasomatites (albitites) occur around and within siderite veins in the southern part of the Gemeric tectonic unit of the Western Carpathians. Accessory minerals of the metasomatites represented by monazite, zircon, apatite, rutile, tourmaline and siderite are basically identical with the quartz-tourmaline stage of other siderite and stibnite veins of the tectonic unit. Statistical analysis of chemical Th-U(total)-Pb isochron method (CHIME) of monazite dating yielded Jurassic-Cretaceous ages subdivided into 3–4 modes, spreading over time interval between 78 and 185 Ma. In contrast, LA-ICPMS 206Pb/238U dating carried out on the same monazite grains revealed a narrow crystallization interval, showing ages of Th-poor cores with phengite inclusions identical within the error limit with Th-rich rims with cauliflower-like structure. The determined lower intercept at 139 ± 1 Ma overlapped the Vallanginian-Berriasian boundary, thus corroborating the model of formation of hydrothermal vein structures within an arcuate deformation front built up in the Variscan basement as a response to Early Cretaceous compression, folding and thrusting. In contrast, associated zircons are considerably older than the surrounding Early-Palaeozoic volcano-sedimentary rocks, showing Neoproterozoic ages. The zircon grains in albitite metasomatites are thus interpreted as fragments of Pan-African magmatic detritus incorporated in the vein structures by buoyant hydrothermal fluids.


Tourmaline Siderite Hydrothermal Vein YPO4 CePO4 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support was provided by the Ministry of Environment and the Geological Survey of Slovakia under contract no. 0503, with a contribution from the grant No. 0080–11 from the Agency for Research and Development (APVV). Authors are grateful for critical comments provided by A. Zeh and an anonymous reviewer.

Supplementary material

710_2015_389_MOESM1_ESM.xls (82 kb)
Electronc respiratory file (XLS 82 kb)


  1. Árkai P, Balogh K, Dunkl I (1995) Timing of low-temperature metamorphism and cooling of the Palaeozoic and Mesozoic formations of the Bükkium, innermost Western Carpathians, Hungary. Geol Rundsch 84:334–344CrossRefGoogle Scholar
  2. Bajaník Š, Hanzel V, Ivanička J, Mello J, Pristaš J, Reichwalder P, Snopko L, Vozár J, Vozárová A (1983) Explanations to geological map of the Slovak Ore Mountains—eastern part 1:50 000. GÚDŠ, Bratislava, p 223 (in Slovak)Google Scholar
  3. Bernard JH (1961) Mineralogie und Geochemie der Siderit-Schwerspatgänge mit Sulphiden im Gebiet von Rudňany (Tschechoslowakei). Geol Práce Zošit 58:5–222Google Scholar
  4. Boulvais P, Ruffet G, Cornichet J, Mermet M (2007) Cretaceous albitization and dequartzification of Hercynian peraluminous granite in the Salvezines Massif (Frech Pyrénées). Lithos 93:1509–1524CrossRefGoogle Scholar
  5. Cohen KM, Finney S, Gibbard PL (2013) International chronostratigraphic chart. International Commission on Stratigraphy (
  6. Corfu F (1988) Differential response of U-Pb systems in coexisting accessory minerals, Winnipeg River Subprovince, Canadian Shield: implications for Archean crustal growth and stabilization. Contrib Mineral Petrol 98:312–325CrossRefGoogle Scholar
  7. Dianiška I (1984) Petrography and geochemistry of albitized granitoids and their surroundings. In: Rozložník L (ed) ZS-SGR, Sb-Poproč. Open File Report. Geofond, Bratislava (in Slovak)Google Scholar
  8. Fallourd S, Poujol M, Boulvais P, Paquette J-L, de Saint Blanquat M, Rémy P (2014) In situ LA-ICP-MS U-Pb titanite dating of Na-Ca metasomatism in orogenic belts: the North Pyrenean example. Intl J Earth Sci (Geol Rundsch) 103:667–682CrossRefGoogle Scholar
  9. Faryad SW (1995a) Petrology and phase relations of low-grade high-pressure metasediments from the Meliata unit, Western Carpathians. Eur J Mineral 7:71–87CrossRefGoogle Scholar
  10. Faryad SW (1995b) Phase petrology and P-T conditions of mafic blueschists from the Meliata unit, Western Carpathians. J Metamorph Geol 13:701–714CrossRefGoogle Scholar
  11. Faryad SW, Dianiška I (1999) Degree of Alpine metamorphism in Early Palaeozoic rocks of the Gemericum. Mineralia Slov 31:485–490 (in Slovak)Google Scholar
  12. Faryad SW, Henjes-Kunst F (1997) Petrologic and geochronologic constraints on the tectonometamorphic evolution of the Meliata unit blueschists, Western Carpathians, Slovakia. In: Grecula P, Hovorka D, Putiš M (eds) Geological evolution of the Western Carpathians. Geocomplex, Bratislava, pp 145–154Google Scholar
  13. Finger F, Broska I, Haunschmid B, Hraško Ľ, Kohút M, Krenn E, Petrík I, Riegler G, Uher P (2003) Electron-microprobe dating of monazites from Western Carpathian basement granitoids: plutonic evidence for an important Permian rifting event subsequent to Variscan crustal anatexis. Intl J Earth Sci (Geol Rundsch) 92:86–98Google Scholar
  14. Gasquet D, Bertrand JM, Paquette JL, Lehmann J, Ratzov G, De Ascenção Guedes R, Tiepolo M, Boullier AM, Scaillet S, Nomade S (2010) Miocene to Messinian deformation and hydrothermalism in the Lauzière Massif (French Western Alps): New U-Th-Pb and Argon ages. Bull Soc Géol France 181:227–241CrossRefGoogle Scholar
  15. Gramaccioli CM, Segalstad TV (1978) A U- and Th-rich monazite from a south-alpine pegmatite at Piona, Italy. Am Mineralogist 63:757–761Google Scholar
  16. Grecula P (1982) The Gemericum—segment of Palaeotethynian riftogeneous basin. Alfa, Bratislava, p 263 (in Slovak)Google Scholar
  17. Grecula P, Abonyi A, Abonyiová M, Antaš J, Bartalský B, Bartalský J, Dianiška I, Drnzík E, Ďuďa R, Gargulák M, Gazdačko Ľ, Hudáček J, Kobulský J, Lörincz L, Macko J, Návesňák D, Németh Z, Novotný L, Radvanec M, Rojkovič I, Rozložník L, Rozložník O, Varček C, Zlocha J (1995) Mineral deposits of the Slovak Ore Mountains. Geocomplex, Bratislava, p 834Google Scholar
  18. Horstwood MSA, Foster GL, Parrish RR, Noble SR, Nowell GM (2003) Common-Pb corrected in situ U-Pb accessory mineral geochronology by LA-MC-ICP-MS. J Anal At Spectrom 18:837–846CrossRefGoogle Scholar
  19. Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Petrol 53:27–62CrossRefGoogle Scholar
  20. Hurai V, Harčová E, Huraiová M, Ozdín D, Prochaska W, Wiegerová V (2002) Origin of siderite veins in the Western Carpathians I. P-T-X-δ13C-δ18O relations in ore-forming brines of the Rudňany deposits. Ore Geol Rev 21:67–101CrossRefGoogle Scholar
  21. Hurai V, Čech P, Dianiška I, Frank W, Harčová E, Huraiová M, Chopin F, Chovan M, Klimko T, Koděra P, Konečný P, Kráľ J, Lexa O, Montigny R, Prochaska W, Pršek J, Schulmann K, Thomas R, Uher P, Urban M, Valášková M (2007) Sources of fluids and origin of mineralizations in the Gemeric unit. Open-File Report, Geological Project No. 0503 (Ministry of Environment of Slovak Republic). Geofond, Bratislava, p 328Google Scholar
  22. Hurai V, Lexa O, Schulmann K, Montigny R, Prochaska W, Frank W, Konečný P, Kráľ J, Thomas R, Chovan M (2008a) Mobilization of ore fluids during Alpine metamorphism: evidence from hydrothermal veins in the Variscan basement of Western Carpathians, Slovakia. Geofluids 8:181–207CrossRefGoogle Scholar
  23. Hurai V, Prochaska W, Lexa O, Schulmann K, Thomas R, Ivan P (2008b) High-density nitrogen inclusions in barite from a giant siderite vein: implications for Alpine evolution of the Variscan basement of Western Carpathians, Slovakia. J Metamorph Geol 26:487–498CrossRefGoogle Scholar
  24. Hurai V, Chovan M, Huraiová M, Koděra P, Konečný P, Lexa O (2010) Slovak Ore mountains: origin of hydrothermal mineralization and environmental impact on mining. Acta Miner-Petrogr Szeged, Field Guide Ser 28, p 36Google Scholar
  25. Hurai V, Paquette J-L, Huraiová M, Sabol M (2012) U-Pb geochronology of zircons from fossiliferous sediments of the Hajnáčka I maar (Slovakia)—type locality of the MN 16a biostratigraphic subzone. Geol Mag 149:989–1000CrossRefGoogle Scholar
  26. Ivan P (1985) Hydrothermal-metasomatic alterations of basic rock types in the surrounding of vein structures of the Rudňany ore field. In: Cambel B, Jarkovský J (eds) The Rudňany Ore Field—Geochemical and Metalogenetic Characteristics. Veda, Bratislava, pp 130–145 (in Slovak)Google Scholar
  27. Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol 211:47–69CrossRefGoogle Scholar
  28. Janots E, Berger A, Gnos E, Whitehouse M, Lewin E, Pettke T (2012) Constraints on fluids evolution during metamorphism from U-Th-Pb systematics in alpine hydrothermal monazite. Chem Geol 326–327:61–71CrossRefGoogle Scholar
  29. Jeřábek P, Lexa O, Schulmann K, Plašienka D (2012) Inverse ductile thinning via lower crustal flow and fold-induced doming in the West Carpathian Eo-Alpine collisional wedge. Tectonics 31:TC5002. doi: 10.1029/2012TC003097 Google Scholar
  30. Kamenický J, Kamenický L (1955) Gemeric granites and ores of the Spiš-Gemer Ore mountains. Geol Práce Zošit 41:5–55 (in Slovak)Google Scholar
  31. Konečný P, Siman P, Holický I, Janák M, Kollárová V (2004) Methodics of monazite dating using an electron microprobe. Mineralia Slov 36:225–235 (in Slovak)Google Scholar
  32. Lexa J, Bezák V, Elečko M, Mello J, Polák M, Potfaj M, Vozár J, Schnabel GW, Pálenský P, Czaszár G, Rylko W, Mackiv B (2000) Geological map of Western Carpathians and adjacent areas 1:500 0000. GÚDŠ, BratislavaGoogle Scholar
  33. Lexa O, Schulmann K, Ježek J (2003) Cretaceous collision and indentation in the West Carpathians: View based on structural analysis and numerical modeling. Tectonics 22:1066. doi: 10.1029/2002TC001472 CrossRefGoogle Scholar
  34. Lowenstein TK, Timofeeff MN (2008) Secular variations in seawater chemistry as a control on the chemistry of basinal brines: test of the hypothesis. Geofluids 8:77–92CrossRefGoogle Scholar
  35. Ludwig KR (2001) User’s manual for Isoplot/Ex version 2.49, a geochronological toolkit for Microsoft Excel. Berkeley Geochronological Center, BerkeleyGoogle Scholar
  36. McLelland J, Morrison J, Selleck B, Cunningham B, Olson C, Schmidt K (2002) Hydrothermal alteration of late- to post-tectonic Lyon Mountain granitic gneiss, Adirondack Mountains, New York: Origin of quartz-sillimanite segregations, quartz-albite lithologies, and associated Kiruna-type low-Ti Fe-oxide deposits. J Metamorph Geol 20:175–190CrossRefGoogle Scholar
  37. Mello J, Reichwalder P, Vozárová A (1998) Bôrka Nappe: high-pressure relic from the subduction-accretion prism of the Meliata Ocean (Inner Western Carpathians, Slovakia). Slovak Geol Mag 4:261–273Google Scholar
  38. Montel JM, Foret S, Veschambre M, Nicollet C, Provost A (1996) Electron microprobe dating of monazite. Chem Geol 131:37–53CrossRefGoogle Scholar
  39. Müller W, Shelley M, Miller P, Broude S (2009) Initial performance metrics of a new custom-designed ArF excimer LA-ICPMS system coupled to a two-volume laser-ablation cell. J Anal At Spectrom 24:209–214CrossRefGoogle Scholar
  40. Munz IA, Wayne D, Austrheim H (1994) Retrograde fluid infiltration in the high-grade Modum Complex, South Norway: evidence for age, source and REE mobility. Contrib Mineral Petrol 116:32–46CrossRefGoogle Scholar
  41. Paquette J-L, Tiepolo M (2007) High resolution (5 μm) U-Th-Pb dating of monazite with excimer laser ablation (ELA)-ICPMS. Chem Geol 240:222–237CrossRefGoogle Scholar
  42. Plašienka D, Grecula P, Putiš M, Kováč M, Hovorka D (1997) Evolution and structure of the Western Carpathians. In: Grecula P, Hovorka D, Putiš M (eds) Geological Evolution of the Western Carpathians. Geocomplex, Bratislava, pp 1–24Google Scholar
  43. Pouchou J-L, Pichoir F (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. In: Heinrich KFJ, Newbury D (eds) Electron Probe Quantitation. Plenum Press, New York, pp 31–76CrossRefGoogle Scholar
  44. Poujol M, Boulvais P, Košler J (2010) Regional-scale Cretaceous albitization in the Pyrenees: evidence from in situ U-Th-Pb dating of monazite, titanite and zircon. J Geol Soc 167:751–767CrossRefGoogle Scholar
  45. Pyle JM, Spear FS, Wark DA (2002) Electron microprobe analysis of REE in apatite, monazite and xenotime: protocols and pitfalls. Rev Mineral Geochem 48:337–362CrossRefGoogle Scholar
  46. Radvanec M, Grecula P, Žák K (2004) Siderite mineralization of the Gemericum superunit (Western Carpathians, Slovakia): review and a revised genetic model. Ore Geol Rev 24:267–298CrossRefGoogle Scholar
  47. Radvanec M, Konečný P, Ondrejka M, Putiš M, Uher P, Németh Z (2009) The Gemeric granites as an indicator of the crustal extension above the Late-Variscan subduction zone and during the Early Alpine riftogenesis (Western Carpathians): An interpretation from the monazite and zircon ages dated by CHIME and SHRIMP methods. Mineralia Slov 41:381–394Google Scholar
  48. Ramseyer K, Boles JR, Lichtner PC (1992) Mechanism of plagioclase albitization. J Sediment Petrol 62:349–356Google Scholar
  49. René M (2005) Geochemical constraints of hydrothermal alterations of two-mica granites of the Moldanubian batholith at the Oukrouhlá Radouň uranium deposit. Acta Geodyn Geomater 2:63–79Google Scholar
  50. Rojkovič I (1985) Paragenesis and mineral succession. In: Cambel B, Jarkovský J (eds) The Rudňany Ore Field—Geochemical and Metalogenetic Characteristics. Veda, Bratislava, pp 183–193 (in Slovak)Google Scholar
  51. Seydoux-Guillaume AM, Wirth R, Deutsch A, Schärer U (2004) Microstructure of 24–1928 Ma concordant monazites: implications for geochronology and nuclear waste deposits. Geochim Cosmochim Acta 68:2517–2527CrossRefGoogle Scholar
  52. Tera F, Wasserburg G (1972) U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth Planet Sci Lett 14:281–304CrossRefGoogle Scholar
  53. Tomascak PB, Krogstad EJ, Walker RJ (1996) U-Pb monazite geochronology of granitic rocks from Maine: implications for Late Proterozoic tectonics in the Northern Appalachians. J Geol 104:185–195CrossRefGoogle Scholar
  54. Tomek Č (1993) Deep structure beneath the central and inner West Carpathians. Tectonophysics 226:417–431CrossRefGoogle Scholar
  55. Tréger M, Malachovský P, Mesarčík I, Kilík J, Miháľ F (2004) Position of Betliar formation in Gemericum geological structure. Mineralia Slov 36:51–60 (in Slovak)Google Scholar
  56. Ulrich F (1928) Occurrence of rutile in siderite veins near Rožňava and its position in vein paragenesis. Rozpr České Akad Věd Umění Praha 8:1–19 (in Czech)Google Scholar
  57. Urban M, Thomas R, Hurai V, Konečný P, Chovan M (2006) Superdense CO2 inclusions in Cretaceous quartz-stibnite veins hosted in low-grade Variscan basement of the Western Carpathians, Slovakia. Mineral Deposita 40:867–873CrossRefGoogle Scholar
  58. Van Achterbergh E, Ryan CG, Jackson SE, Griffin WL (2001) Data reduction software for LA-ICP-MS. In: Sylvester PJ (ed), Laser ablation–ICP–mass spectrometry in the Earth sciences: principles and applications. Mineral Assoc Canada Short Course Ser 29:239–243Google Scholar
  59. Varček C (1955) To the question of origin and abundance of albite in siderite veins in the surroundings of Rožňava. Geol Práce Zprávy 4:86–92 (in Slovak)Google Scholar
  60. Varček C (1985) Metalogenetic characteristics of the Spišsko-gemerské rudohorie Mountains and the position of the Rudňany ore field. In: Cambel B, Jarkovský J (eds) The Rudňany Ore Field—Geochemical and Metallogenetic Characteristics. Veda, Bratislava, pp 61–77 (in Slovak)Google Scholar
  61. Vozárová A, Šarinová K, Rodionov N, Laurinc D, Paderin I, Sergeev S, Lepekhina E (2012) U-Pb ages of detrital zircons from Paleozoic metasandstones of the Gelnica Terrane (Southern Gemeric Unit, Western Carpathians, Slovakia): Evidence for Avalonian-Amazonian provenance. Int J Earth Sci (Geol Rundsch) 101:919–936CrossRefGoogle Scholar
  62. Vozárová A, Konečný P, Šarinová K, Vozár J (2014) Ordovician and Cretaceous tectonothermal history of the Southern Gemericum Unit from microprobe monazite geochronology (Western Carpathians, Slovakia). Int J Earth Sci (Geol Rundsch) 103:1005–1022CrossRefGoogle Scholar
  63. Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand Newslett 19:1–23CrossRefGoogle Scholar
  64. Wiedenbeck M, Hanchar JM, Peck WH, Sylvester P, Valley J, Whitehouse M, Kronz A, Morishita Y, Nasdala L, Fiebig J, Franchi I, Girard J-P, Greenwood RC, Hinton R, Kita N, Mason PRD, Norman M, Ogasawara M, Piccoli PM, Rhede D, Satoh H, Schulz-Dobrick B, Skår Ø, Spicuzza MJ, Terada K, Tindle A, Togashi S, Vennemann T, Xie Q, Zheng Y-F (2004) Further characterisation of the 91500 zircon crystal. Geostand Geoanal Res 28:9–39CrossRefGoogle Scholar
  65. Zhu XK, O’Nions RK (1999) Zonation of monazite in metamorphic rocks and its implications for high temperature thermochronology: a case study from the Lewisian terrain. Earth Planet Sci Lett 171:209–220CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • V. Hurai
    • 1
  • J.-L. Paquette
    • 2
    • 3
    • 4
  • O. Lexa
    • 5
  • P. Konečný
    • 6
  • I. Dianiška
    • 7
  1. 1.Geological InstituteSlovak Academy of SciencesBratislavaSlovakia
  2. 2.Laboratoire Magmas et VolcansClermont Université, Université Blaise PascalClermont-FerrandFrance
  3. 3.CNRS, UMR6524, LMVClermont-FerrandFrance
  4. 4.IRD, R 163, LMVClermont-FerrandFrance
  5. 5.Institute of Petrology and Structural GeologyCharles UniversityPrahaCzech Republic
  6. 6.Geological Survey of Slovak RepublicBratislavaSlovakia
  7. 7.RožňavaSlovakia

Personalised recommendations