Mineralogy and Petrology

, Volume 109, Issue 4, pp 397–404 | Cite as

Calcinaksite, KNaCa(Si4O10) H2O, a new mineral from the Eifel volcanic area, Germany

  • Nikita V. Chukanov
  • Sergey M. Aksenov
  • Ramiza K. Rastsvetaeva
  • Günter Blass
  • Dmitry A. Varlamov
  • Igor V. Pekov
  • Dmitry I. Belakovskiy
  • Vladislav V. Gurzhiy
Original Paper

Abstract

The new mineral calcinaksite, ideally KNaCa(Si4O10) · H2O, the first hydrous and Ca-dominant member of the litidionite group, is found in a xenolith of metamorphosed carbonate-rich rock from the southern lava flow of the Bellerberg volcano, Eastern Eifel region, Rheinland-Pfalz, Germany. It is associated with wollastonite, gehlenite, brownmillerite, Ca2SiO4 (larnite or calcio-olivine), quartz, aragonite, calcite, jennite, tobermorite and ettringite. Calcinaksite occurs as clusters of colourless to light-grey subhedral prismatic crystals. The mineral is brittle, with Mohs’ hardness of 5; Dmeas is 2.62(2) g/cm3 and Dcalc is 2.623 g/cm3. The IR spectrum shows the presence of H2O molecules forming three different H-bonds. Calcinaksite is optically biaxial (+), α = 1.542(2), β = 1.550(2), γ = 1.565(3), 2V meas = 75(10). The chemical composition (electron-microprobe data, H2O determined by the Alimarin method, wt%) is: Na2O 6.69, K2O 12.01, CaO 15.04, FeO 0.59, SiO2 61.46, H2O 4.9, total 100.69. The empirical formula is H2.11 K0.99Na0.84Ca1.04Fe0.03Si3.98O11. The crystal structure was solved and refined to R 1 = 0.053, wR 2 = 0.075 based upon 3057 reflections having I > 3σ(I). Calcinaksite is triclinic, space group P \( \overline{1} \) , a = 7.021(2), b = 8.250(3), c = 10.145(2) Å. α = 102.23(2)°, β = 100.34(2)°, γ = 115.09(3)°, V = 495.4(3) Å3, Z = 2. The strongest reflections of the X-ray powder pattern [d, Å (I,%) (hkl)] are: 3.431 (70) (−121, −211, −210, 012, 0–22), 3.300 (67) (−031), 3.173 (95) (−103, −201, −220, 003, 111), 3.060 (100) (−212, 2–11, −221, 200, −1-13, 021, −202), 2.851 (83) (0–23, −122, 1–13, 1–31), 2.664 (62) (1–23, −222, 201).

Keywords

Aragonite Wollastonite Ettringite Tobermorite Gehlenite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are grateful to Svetlana A. Vozchikova for assistance in the measurement of density of calcinaksite and to Larisa A. Korshunova for the determination of H2O. We are also grateful to Lutz Nasdala, Andreas Ertl, Johann Raith and an anonymous referee for reviewing the paper. This study was supported by the Russian Foundation for Basic Research (grants nos. 14-05-00190-a and 14-05-31150 mol_a) and grant No MK-4990.2014.5 of the Foundation of the President of the Russian Federation. Technical support by the SPbSU X-Ray Diffraction Resource Center is gratefully acknowledged.

References

  1. Ageeva OA (2000) New fenaksite-manaksite isomorphous series. Dokl Earth Sci 373A:927–929Google Scholar
  2. Aksenov SM, Rastsvetaeva RK, Chukanov NV, Kolitsch U (2014) Structure of calcinaksite KNa[Ca(H2O)][Si4Ol0], the first hydrous member of the litidionite group of silicates with [Si8O20]8− tubes. Acta Cryst B 70:768–775CrossRefGoogle Scholar
  3. Brandão P, Rocha J, Reis MS, dos Santos AM, Jin R (2009) Magnetic properties of KNaMSi4O10 compounds (M = Mn, Fe, Cu). J Solid State Chem 182:253–258CrossRefGoogle Scholar
  4. Bucher K, Grapes R (2011) Petrogenesis of metamorphic rocks. Springer Verlag, HeidelbergCrossRefGoogle Scholar
  5. Cadoni M, Ferraris G (2011) Synthesis and crystal structure of Na2MnSi4O10: relationship with the manaksite group. Rend Lincei, Sci Fisiche Nat 22:225–234CrossRefGoogle Scholar
  6. Chukanov NV (2014) Infrared spectra of mineral species: extended library. Springer Verlag, DordrechtCrossRefGoogle Scholar
  7. Chukhrov FV, Smolianinova NN (eds) (1981) Minerals. Nauka, Moscow, Volume III(3) (in Russian)Google Scholar
  8. Dorfman MD, Rogachev DD, Goroshchenko ZI, Mokretsova AV (1959) Fenaksite – a new mineral. Tr Mineralogicheskogo Muzeya Akademiy Nauk SSSR 9:152–157 (in Russian)Google Scholar
  9. Durand G, Vilminot S, Richard-Plouet M, Derory A, Lambour JP, Drillon M (1997) Magnetic behavior of Na2 MSi4O10 (M = Co, Ni) compounds. J Solid State Chem 131:335–340CrossRefGoogle Scholar
  10. Golovachev VP, Drozdov YN, Kuz’min EA, Belov NV (1970) The crystal structure of fenaksite, NaKFeSi4O10. Dokl Akad Nauk SSSR 194:818–820 (in Russian)Google Scholar
  11. Grapes R (2011) Pyrometamorphism. Springer Verlag, HeidelbergGoogle Scholar
  12. Gross S (1977) The mineralogy of the Hatrurim formation, Israel. Geological survey of Israel, bulletin no. 70Google Scholar
  13. Karimova O, Burns PC (2008) Silicate tubes in the crystal structure of manaksite. In: Krivovichev S (ed) Minerals as advanced materials I. Springer, Berlin, pp 153–157CrossRefGoogle Scholar
  14. Kawamura K, Kawahara A (1977) The crystal structure of synthetic copper sodium silicate: CuNa2Si4O10. Acta Cryst B33:1071–1075CrossRefGoogle Scholar
  15. Khomyakov AP, Kurova TA, Nechelyustov GN (1992) Manaksite, NaKMnSi4O10, a new mineral. Zap Vses Mineral O-va 121:112–115 (in Russian)Google Scholar
  16. Kornev AN, Maksimov BA, Lider VV, Ilyukhin VV, Belov NV (1972) Crystal structure of Na2Cu[Si4O10]. Sov Phys Dokl 17:735–737 (in Russian)Google Scholar
  17. Litt T, Brauer A, Goslar T, Merk J, Balaga K, Mueller H, Ralska-Jasiewiczowa M, Stebich M, Negendank JFW (2001) Correlation and synchronisation of late glacial continental sequences in northern Central Europe based on annually laminated lacustrine sediments. In: Bjorck S, Lowe JJ, Walker MJC (eds): Integration of ice core, marine and terrestrial records of Termination 1 from the North Atlantic region. Quatern Sci Rev. 20:1233–1249Google Scholar
  18. Pozas JMM, Rossi G, Tazzoli V (1975) Re-examination and crystal structure analysis of litidionite. Am Minerol 60:471–474Google Scholar
  19. Rozhdestvenskaya IV, Bannova II, Nikishova LV, Soboleva TV (2004) The crystal structure of fenaksite K2Na2Fe2Si8O20. Dokl Earth Sci 398:1029–1033Google Scholar
  20. Schmitt AK, Wetzel F, Cooper KM, Zou H, Wörner G (2010) Magmatic longevity of Laacher See volcano (Eifel, Germany) indicated by U–Th dating of intrusive carbonatites. J Petrol 51:1053–1085CrossRefGoogle Scholar
  21. Taylor HFW (1997) Cement chemistry. Thomas Telford Ltd edition, LondonGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Nikita V. Chukanov
    • 1
  • Sergey M. Aksenov
    • 2
  • Ramiza K. Rastsvetaeva
    • 2
  • Günter Blass
    • 3
  • Dmitry A. Varlamov
    • 4
  • Igor V. Pekov
    • 5
  • Dmitry I. Belakovskiy
    • 6
  • Vladislav V. Gurzhiy
    • 7
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovkaRussia
  2. 2.Institute of CrystallographyRussian Academy of SciencesMoscowRussia
  3. 3.EschweilerGermany
  4. 4.Institute of Experimental MineralogyRussian Academy of SciencesChernogolovkaRussia
  5. 5.Faculty of GeologyMoscow State UniversityMoscowRussia
  6. 6.Fersman Mineralogical Museum of the Russian Academy of SciencesMoscowRussia
  7. 7.Faculty of GeologySt Petersburg State UniversitySt PetersburgRussia

Personalised recommendations