Mineralogy and Petrology

, Volume 109, Issue 4, pp 485–500 | Cite as

Hydrothermal activity during tectonic building of the Variscan orogen recorded by U-Pb systematics of xenotime in the Grès Armoricain formation, Massif Armoricain, France

  • Romain TartèseEmail author
  • Marc Poujol
  • Eric Gloaguen
  • Philippe Boulvais
  • Kerstin Drost
  • Jan Košler
  • Theodoros Ntaflos
Original Paper


In the Saint-Aubin-des-Châteaux deposit (Massif Armoricain, France), the Ordovician Grès Armoricain sandstones have undergone several fluid-rock interaction events, including diagenetic cementation and orogenic base metal-As-Sb-Au mineralisation. Ironstone layers interbedded in the sandstones contain several generations of spectacular authigenic xenotime overgrowths that formed around detrital zircon grains in response to successive hydrothermal events. Textural and chemical characterisations allow to distinguish three generations of xenotime overgrowths, differing notably in their REE characteristics. In-situ U-Pb data obtained on these xenotime overgrowths show that their U-Pb systematics were largely disturbed by successive hydrothermal events over about 90 Ma between ~ 330 and ~ 420 Ma, a time interval encompassing most phases of the construction of the Variscan orogen in France. The younger dates cluster around ~ 330–340 Ma and likely correspond to the age of the deposition of massive sulphides and base-metals in the Saint-Aubin-des-Châteaux deposits, which is consistent with the structural contexts where they formed. Finally, this study shows that similarly to monazite, another phosphate widely used for U-Pb and Th-Pb dating studies, the U-Pb chronometric system in xenotime appears to be highly sensitive to fluid circulations.


207Pb Detrital Zircon Massive Sulphide Fluorapatite Laser Ablation Inductively Couple Plasma Mass Spectrometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We want to thank the Hervé Granulats Company, and more particularly their quarry manager Bruno Geibig, for facilitating our access to the Saint-Aubin-des-Châteaux quarry. We are also grateful to Olivier Pourret for access to the Secondary Electron Microscope at the LaSalle Institute (Beauvais, France). Franz Kiraly (University of Vienna) is thanked for assistance with microprobe analyses and technical support. The analytical work at the University of Bergen was supported by GACR project P210/12/2114. Finally, we thank Ian Fletcher and an anonymous reviewer for his corrections and suggestions which have substantially improved the manuscript.

Supplementary material

710_2015_373_MOESM1_ESM.docx (1 mb)
ESM 1 (DOCX 1071 kb)


  1. Arenas R, Sánchez Martínez S, Gerdes A, Albert R, Díez Fernández R, Andonaegui P (2014) Re-interpreting the Devonian ophiolites involved in the variscan suture: U-Pb and Lu-Hf zircon data of the moeche ophiolite (Cabo Ortegal Complex, NW Iberia). Int J Earth Sci 103:1385–1402. doi: 10.1007/s00531-013-0880-x
  2. Ballèvre M, Bosse V, Ducassou C, Pitra P (2009) Palaeozoic history of the Armorican Massif: models for the tectonic evolution of the suture zones. C R Geosci 341:174–201CrossRefGoogle Scholar
  3. Barrat JA, Zanda B, Moynier F, Bollinger C, Liorzou C, Bayon G (2012) Geochemistry of CI chondrites: major and trace elements, and Cu and Zn isotopes. Geochim Cosmochim Acta 83:79–92CrossRefGoogle Scholar
  4. Bernard-Griffiths J, Gebauer D, Grünenfelder M, Piboule M (1985) The tonalite belt of Limousin (French Central Massif): U-Pb zircon ages and geotectonic implications. Bull Soc Geol Fr 8:523–529Google Scholar
  5. Berthé D, Choukroune P, Jégouzo P (1979) Orthogneiss, mylonite and non-coaxial deformation of granites: the example of the South Armorican Shear Zone. J Struct Geol 1:31–42CrossRefGoogle Scholar
  6. Bertrand JM, Leterrier J, Cuney M, Brouand M, Stussi M, Delaperrière E, Virlogeux D (2001) Géochronologie U-Pb sur zircons de granitoïdes du Confolentais, du massif de Charroux-Civray (seuil du Poitou) et de Vendée. Géol Fr 1–2:167–189Google Scholar
  7. Bosse V, Boulvais P, Gautier P, Tiepolo M, Ruffet G, Devidal JL, Cherneva Z, Gerdjikov I, Paquette JL (2009) Fluid-induced disturbance of the monazite Th–Pb chronometer: in situ dating and element mapping in pegmatites from the Rhodope (Greece, Bulgaria). Chem Geol 261:286–302CrossRefGoogle Scholar
  8. Chantraine J, Autran A, Cavelier C (1996) Carte géologique de la France. BRGM, OrléansGoogle Scholar
  9. Chauris L, Marcoux E (1994) Metallogeny of Armorican Massif. In: Keppie JD (ed) Pre-Mesozoic geology in France and related area. Springer, Berlin Heidelberg, pp 243–264CrossRefGoogle Scholar
  10. Chauvel JJ (1974) Les minerais de fer de l’Ordovicien inférieur du bassin de Bretagne-Anjou, France. Sedimentology 21:127–147CrossRefGoogle Scholar
  11. Chauvel JJ, Le Corre C (1971) La transgression paléozoïque et l’Ordovicien inférieur dans la presqu’île de Crozon (Finistère). Mém. BRGM, Orléans, pp 109–117Google Scholar
  12. Chauvel JJ, Phan KD (1965) Présence d’apatite strontianifère dans le minerai de fer de l’Ordovicien inférieur de Bretagne. C R Acad Sci Paris 260:2855–2857Google Scholar
  13. Choukroune P, Lopez-Munoz M, Ouali J (1983) Cisaillement ductile sud-armoricain et déformations discontinues associées: mise en évidence de la déformation régionale non coaxiale dextre. C R Acad Sci Paris 296:657–660Google Scholar
  14. Corti G, Moratti G, Sani F (2005) Relations between surface faulting and granite intrusions in analogue models of strike-slip deformation. J Struct Geol 27:1547–1562CrossRefGoogle Scholar
  15. Díaz García F, Arenas R, Martínez Catalán JR, González Del Tánago J, Dunning G (1999) Tectonic evolution of the Careón ophiolite (Northwest Spain): a remnant of oceanic lithosphere in the Variscan belt. J Geol 107:587–605CrossRefGoogle Scholar
  16. Drost K, Wirth R, Košler J, Fonneland Jørgensen H, Ntaflos T (2013) Chemical and structural relations of epitaxial xenotime and zircon substratum in sedimentary and hydrothermal environments: a TEM study. Contrib Mineral Petrol 165:737–756CrossRefGoogle Scholar
  17. Ducassou C, Ballèvre M, Lardeux H, Robin C (2011) Evidence for pre-orogenic, Early Devonian rifting in the Variscan belt: stratigraphy and structure of the Palaeozoic cover of the Mauges Unit (Upper Allochthon, Armorican massif, France). Int J Earth Sci 100:1451–1476CrossRefGoogle Scholar
  18. Ducassou C, Poujol M, Ruffet G, Bruguier O, Ballèvre M (2014) Relief variations and erosion of the Variscan belt: detrital geochronology of the Palaeozoic sediments from the Mauges Unit (Armorican Massif, France). J Geol Soc Lond Spec Pub 405:137–167CrossRefGoogle Scholar
  19. Durand J, Noblet C (1986) Paléocourants dans la formation du grès armoricain: persistance des mécanismes de transport en domaine cratonique. Rev Géol Dyn Géog Phys 27:13–26Google Scholar
  20. England GL, Rasmussen B, McNaughton NJ, Fletcher IR, Groves DI, Krapež B (2001) SHRIMP U-Pb ages of diagenetic and hydrothermal xenotime from the Archaean Witwatersrand Supergroup of South Africa. Terra Nova 13:360–367CrossRefGoogle Scholar
  21. Fletcher IR, Rasmussen B, McNaughton NJ (2000) SHRIMP U-Pb geochronology of authigenic xenotime and its potential for dating sedimentary basins. Aust J Earth Sci 47:845–859CrossRefGoogle Scholar
  22. Gapais D, Le Corre C (1980) Is the Variscan belt of Brittany a major shear zone? Nature 288:574–576CrossRefGoogle Scholar
  23. Gloaguen E, Branquet Y, Boulvais P, Moëlo Y, Chauvel JJ, Chiappero PJ, Marcoux E (2007) Palaeozoic oolitic ironstone of the French Armorican Massif: a chemical and structural trap for orogenic base metal-As-Sb-Au mineralisation during Variscan strike-slip deformation. Miner Deposita 42:399–422CrossRefGoogle Scholar
  24. Gratz R, Heinrich W (1997) Monazite-xenotime thermobarometry: experimental calibration of the miscibility gap in the binary system CePO4-YPO4. Am Mineral 82:772–780Google Scholar
  25. Guillocheau F, Rolet M (1982) La sédimentation Paléozoïque Ouest-Armoricaine. Bull Soc Géol Minér Bretagne 14:45–62Google Scholar
  26. Gumiaux C, Gapais D, Brun JP, Chantraine J, Ruffet G (2004) Tectonic history of the Variscan Armorican Shear belt (Brittany, France). Geodin Acta 17:289–307CrossRefGoogle Scholar
  27. Harlov DE, Wirth R, Hetherington CJ (2007) The relative stability of monazite and huttonite at 300–900 °C and 200–1000 MPa: metasomatism and the propagation of metastable mineral phases. Am Mineral 92:1652–1664CrossRefGoogle Scholar
  28. Harlov DE, Wirth R, Hetherington CJ (2011) Fluid-mediated partial alteration in monazite: the role of coupled dissolution-reprecipitation in element redistribution and mass transfer. Contrib Mineral Petrol 162:329–348CrossRefGoogle Scholar
  29. Hetherington CJ, Harlov DE (2008) Metasomatic thorite and uraninite inclusions in xenotime and monazite from granitic pegmatites, Hidra anorthosite massif, southwestern Norway: mechanics and fluid chemistry. Am Mineral 93:806–820CrossRefGoogle Scholar
  30. Hetherington CJ, Jercinovic MJ, Williams ML, Mahan K (2008) Understanding geologic processes with xenotime: composition, chronology, and a protocol for electron probe microanalysis. Chem Geol 254:133–147CrossRefGoogle Scholar
  31. Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol 211:47–69CrossRefGoogle Scholar
  32. Jégouzo P (1980) The South Armoricain shear zone. J Struct Geol 2:39–47CrossRefGoogle Scholar
  33. Joseph P (1982) Le minerai de fer oolithique ordovicien du Massif Armoricain: sédimentologie et paléogéographie. Thesis, Ecole Nationale Supérieure des Mines de Paris, 324 pGoogle Scholar
  34. Klötzli E, Klötzli U, Kosler J (2007) A possible laser ablation xenotime U-Pb age standard: reproducibility and accuracy. Geochim Cosmochim Acta 71:A495Google Scholar
  35. Kositcin N, McNaughton NJ, Griffin BJ, Fletcher IR, Groves DI, Rasmussen B (2003) Textural and geochemical discrimination between xenotime of different origin in the Archaean Witwatersrand Basin, South Africa. Geochim Cosmochim Acta 67:709–731CrossRefGoogle Scholar
  36. Lan ZW, Chen ZQ, Li XH, Li B, Adams D (2013) Hydrothermal origin of the Paleoproterozoic xenotime from the King Leopold Sandstone of the Kimberley group, Kimberley, NW Australia: implications for a ca 1.7 Ga far-field hydrothermal event. Aust J Earth Sci 60:497–508CrossRefGoogle Scholar
  37. Le Corre C (1978) Approche quantitative des processus synschisteux. L’exemple du segment Hercynien de Bretagne Centrale. Thesis, Université de Rennes I, 382 pGoogle Scholar
  38. Le Corre C, Auvray B, Ballèvre M, Robardet M (1991) Le Massif Armoricain. Sci Géol Bull 44:31–103Google Scholar
  39. Lemarchand J, Boulvais P, Gaboriau M, Boiron MC, Tartèse R, Cokkinos M, Bonnet S, Jégouzo P (2012) Giant quartz vein formation and high elevation meteoric fluid infiltration into the South Armorican Shear Zone: geological, fluid inclusion and stable isotope evidence. J Geol Soc Lond 169:17–27CrossRefGoogle Scholar
  40. Ludwig KR (2008) Isoplot/Ex Version 3.70: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Spec Pub 4, 73 pp.Google Scholar
  41. Mathieu R, Zetterström L, Cuney M, Gauthier-Lafaye F, Hidaka H (2001) Alteration of monazite and zircon and lead migration as geochemical tracers of fluid paleocirculations around the Oklo-Okélobondo and Bamgombé natural nuclear reaction zones (Franceville basin, Gabon). Chem Geol 171:147–171CrossRefGoogle Scholar
  42. Mesto E, Scordari F, Lacalamita M, Schingaro E (2012) Tobelite and NH4+-rich muscovite single crystals from Ordovician Armorican sandstones (Brittany, France): structure and crystal chemistry. Am Mineral 97:1460–1468CrossRefGoogle Scholar
  43. Moëlo Y, Lasnier B, Palvadeau P, Léone P, Fontan F (2000) La Lulzacite, Sr2Fe2 + (Fe2+, Mg)2Al4(PO4)4(OH)10, un nouveau phosphate de strontium (Saint-Aubin-Des-Chateâux, Loire-Atlantique, France). C R Acad Sci Paris 330:314–324Google Scholar
  44. Moëlo Y, Lulzac Y, Rouer O, Palvadeau P, Gloaguen E, Léone P (2002) Scandium mineralogy: pretulite with scandian zircon and xenotime-(Y) within an apatite-rich oolitic ironstone from Saint-Aubin-Des-Châteaux, Armorican Massif, France. Can Mineral 40:1657–1673CrossRefGoogle Scholar
  45. Moëlo Y, Rouer O, Bouhnik-Le CM (2008) From diagenesis to hydrothermal recrystallisation: polygenic Sr-rich fluorapatite from the oolitic ironstone of Saint-Aubin-des-Châteaux (Armorican Massif, France). Eur J Mineral 20:205–216CrossRefGoogle Scholar
  46. Müller W, Shelley M, Miller P, Broude S (2009) Initial performance metrics of a new custom-designed ArF excimer LA-ICPMS system coupled to a two-volume laser-ablation cell. J Anal Atom Spec 24:209–214CrossRefGoogle Scholar
  47. Noblet C (1983) Interprétations des cartes d’isopaques de la Formation du Grès armoricain levées en Bretagne et en Normandie. Géol Fr 2:311–320Google Scholar
  48. Pin C, Paquette JL, Santos Zalduegui JF, Gil Ibarguchi JI (2002) Early Devonian supra-subduction zone ophiolite related to incipient collisional processes in the Western Variscan Belt: The Sierra de Careón unit, Ordenes Complex, Galicia. In: Martínez Catalán JR, Hatcher Jr RD, Arenas R, Díaz García F (eds) Variscan-Appalachian Dynamics: The Building of the Late Paleozoic Basement, Geol Soc Am Spec Paper 364, pp 57–71Google Scholar
  49. Pin C, Paquette JL, Ábalos B, Santos FJ, Gil Ibarguchi JI (2006) Composite origin of an early Variscan transported suture: Ophiolitic units of the Morais Nappe Complex (north Portugal). Tectonics 25:TC5001, doi:  10.1029/2006TC001971
  50. Pitra P, Ballèvre M, Ruffet G (2010) Inverted metamorphic field gradient towards a Variscan suture zone (Champtoceaux Complex, Armorican Massif, France). J Metamorph Geol 28:183–208CrossRefGoogle Scholar
  51. Poitrasson F, Chenery S, Bland DJ (1996) Contrasted monazite hydrothermal alteration mechanisms and their geochemical implications. Earth Planet Sci Lett 145:79–96CrossRefGoogle Scholar
  52. Poitrasson F, Chenery S, Shepherd TJ (2000) Electron microprobe and LA-ICP-MS study of monazite hydrothermal alteration: implications for U-Th-Pb geochronology and nuclear ceramics. Geochim Cosmochim Acta 64:3283–3297CrossRefGoogle Scholar
  53. Poujol M, Boulvais P, Kosler J (2010) In-situ LA-ICP-MS U-Th-Pb dating of metasomatic fluid circulation: evidence of regional-scale albitization in the Pyrénées. J Geol Soc Lond 167:751–767CrossRefGoogle Scholar
  54. Rasmussen B (1996) Early-diagenetic REE-phosphate minerals (florencite, gorceixite, crandallite and xenotime) in marine sandstones: a major sink for oceanic phosphorus. Am J Sci 296:601–632CrossRefGoogle Scholar
  55. Rasmussen B (2005) Radiometric dating of sedimentary rocks: the application of diagenetic xenotime geochronology. Earth Sci Rev 68:197–243CrossRefGoogle Scholar
  56. Rasmussen B, Fletcher IR, Bengtson S, McNaughton NJ (2004) SHRIMP U-Pb dating of diagenetic xenotime in the stirling range formation, Western Australia: 1.8 billion-year minimum age for the Stirling biota. Precambrian Res 133:329–337CrossRefGoogle Scholar
  57. Rasmussen B, Fletcher IR, Muhling JR (2011) Response of xenotime to prograde metamorphism. Contrib Mineral Petrol 162:1259–1277CrossRefGoogle Scholar
  58. Roman-Berdiel T, Gapais D, Brun JP (1997) Granite intrusion along strike-slip zones in experiment an nature. Am J Sci 297:651–678CrossRefGoogle Scholar
  59. Sánchez Martínez S, Arenas R, Gerdes A, Castiñeiras P, Potrel A, Fernández-Suárez J (2011) Isotope geochemistry and revised geochronology of the Purrido Ophiolite (Cabo Ortegal Complex, NW Iberian Massif): Devonian magmatism with mixed sources and involved Mesoproterozoic basement. J Geol Soc Lond 168:733–750CrossRefGoogle Scholar
  60. Seydoux-Guillaume AM, Paquette JL, Wiedenbeck M, Montel JM, Heinrich W (2002) Experimental resetting of the U-Th-Pb systems in monazite. Chem Geol 191:165–181CrossRefGoogle Scholar
  61. Seydoux-Guillaume AM, Montel JM, Bingen B, Bosse V, de Parseval P, Paquette JL, Janots E, Wirth R (2012) Low-temperature alteration of monazite: fluid mediated coupled dissolution-precipitation, irradiation damage, and disturbance of the U-Pb and Th-Pb chronometers. Chem Geol 330–331:140–158CrossRefGoogle Scholar
  62. Stern RA (1997) The GSC sensitive high resolution ion microprobe (SHRIMP): analytical techniques of zircon U-Th-Pb age determinations and performance evaluation. Radiogenic and Isotopic Studies: Report 10. Geological Survey of Canada, Current Research, pp. 1–31Google Scholar
  63. Tajčmanová L, Soejono I, Konopásek J, Košler J, Klötzli U (2010) Structural position of high-pressure felsic to intermediate granulites from NE Moldanubian domain (Bohemian Massif). J Geol Soc Lond 167:329–345CrossRefGoogle Scholar
  64. Tartèse R, Poujol M, Ruffet G, Boulvais P, Yamato P, Košler J (2011a) New U-Pb zircon and 40Ar/39Ar muscovite age constraints on the emplacement of the Lizio syn-tectonic granite (Armorican massif, France). C R Geosci 343:443–453CrossRefGoogle Scholar
  65. Tartèse R, Ruffet G, Poujol M, Boulvais P, Ireland TR (2011b) Simultaneous resetting of the muscovite K-Ar and monazite U-Pb geochronometers: a story of fluids. Terra Nova 23:390–398CrossRefGoogle Scholar
  66. Tartèse R, Boulvais P, Poujol M, Chevalier T, Paquette JL, Ireland TR, Deloule E (2012) Mylonites of the South Armorican Shear Zone: Insights for crustal-scale fluid flow and water-rock interaction processes. J Geodyn 56–57:86–107CrossRefGoogle Scholar
  67. Tera F, Wasserburg GJ (1972) U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth Planet Sci Lett 14:281–304CrossRefGoogle Scholar
  68. Teufel S, Heinrich W (1997) Partial resetting of the U-Pb isotope system in monazite through hydrothermal experiments: an SEM and U-Pb isotope study. Chem Geol 137:273–281CrossRefGoogle Scholar
  69. Vallini DA, Rasmussen B, Krapež B, Fletcher IR, McNaughton NJ (2002) Obtaining diagenetic ages from metamorphosed sedimentary rocks: U-Pb dating of unusually coarse xenotime cement in phosphate sandstone. Geology 30:1083–1086CrossRefGoogle Scholar
  70. Vallini DA, Rasmussen BR, Krapež B, Fletcher IR, McNaughton NJ (2005) Microtextures, geochemistry and geochronology of authigenic xenotime: constraining the cementation history of a Palaeoproterozoic metasedimentary sequence. Sedimentology 52:101–122CrossRefGoogle Scholar
  71. Vallini DA, Cannon WF, Schulz KJ (2006) Age constraints for Paleoproterozoic glaciation in the Lake Superior Region: detrital zircon and hydrothermal xenotime ages of the Chocolay Group, Marquette Range Supergroup. Can J Earth Sci 43:571–591CrossRefGoogle Scholar
  72. van Achterbergh E, Ryan CG, Jackson SE, Griffin W (2001) Data reduction software for LA-ICP-MS. In: Sylvester P (ed) Laser Ablation-ICPMS in the Earth Science. Miner. Assoc. Canada, vol. 29, pp. 239–243Google Scholar
  73. van Emden B, Thornber MR, Graham J, Lincoln FJ (1997) The incorporation of actinides in monazite and xenotime from placer deposits in Western Australia. Can Mineral 35:95–104Google Scholar
  74. Vermeesch P (2012) On the visualisation of detrital age distributions. Chem Geol 312–313:190–194CrossRefGoogle Scholar
  75. Vigneresse JL, Brun JP (1983) Les leucogranites armoricains. Structures et mise en place des granites hercyniens. Bull Soc Geol Fr 25:357–366CrossRefGoogle Scholar
  76. Wilby PR, Page AA, Zalasiewicz JA, Milodowski AE, Williams M, Evans JA (2007) Syntectonic monazite in low-grade mudrocks: a potential geochronometer for cleavage formation? J Geol Soc Lond 164:53–56CrossRefGoogle Scholar
  77. Williams ML, Jercinovic M, Harlov DE, Budzìn B, Hetherington CJ (2011) Resetting monazite ages during fluid-related alteration. Chem Geol 283:218–225CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Romain Tartèse
    • 1
    Email author
  • Marc Poujol
    • 2
  • Eric Gloaguen
    • 3
  • Philippe Boulvais
    • 2
  • Kerstin Drost
    • 4
    • 5
  • Jan Košler
    • 5
    • 6
  • Theodoros Ntaflos
    • 7
  1. 1.Planetary and Space SciencesThe Open UniversityMilton KeynesU K
  2. 2.UMR CNRS 6118 Géosciences Rennes, OSURUniversité de Rennes 1Rennes CedexFrance
  3. 3.BRGM, Institut des Sciences de la Terre d’Orléans, UMR CNRS 7327OrléansFrance
  4. 4.Fachbereich Geowissenschaften, AG IsotopengeochemieEberhard Karls Universität TübingenTübingenGermany
  5. 5.Department of Earth Science and Centre for GeobiologyUniversity of BergenBergenNorway
  6. 6.Czech Geological SurveyPrague 1Czech Republic
  7. 7.Department of Lithospheric ResearchUniversity of ViennaWienAustria

Personalised recommendations