Mineralogy and Petrology

, Volume 109, Issue 4, pp 421–430 | Cite as

Emulating exhalative chemistry: synthesis and structural characterization of ilinskite, Na[Cu5O2](SeO3)2Cl3, and its K-analogue

  • Vadim M. Kovrugin
  • Oleg I. Siidra
  • Marie Colmont
  • Olivier Mentré
  • Sergey V. Krivovichev
Original Paper

Abstract

The K- and Na-synthetic analogues of the fumarolic mineral ilinskite have been synthesized by the chemical vapor transport (CVT) reactions method. The A[Cu5O2](SeO3)2Cl3 (A+ = K+, Na+) compounds crystallize in the orthorhombic space group Pnma: a = 18.1691(6) Å, b = 6.4483(2) Å, c = 10.5684(4) Å, V = 1238.19(7) Å3, R1 = 0.018 for 1957 unique reflections with F > 4σF for K[Cu5O2](SeO3)2Cl3 (KI), and a = 17.7489(18) Å, b = 6.4412(6) Å, c = 10.4880(12) Å, V = 1199.0(2) Å3, R1 = 0.049 for 1300 unique reflections with F > 4σF for Na[Cu5O2](SeO3)2Cl3 (NaI). The crystal structures of KI and NaI are based upon the [O2Cu5]6+ sheets consisting of corner-sharing (OCu4)6+ tetrahedra. The Na-for-K substitution results in the significant expansion of the interlayer space and changes in local coordination of some of the Cu2+ cations. The A+ cation coordination changes from fivefold (for Na+) to ninefold (for K+). The CVT reactions method provides a unique opportunity to model physicochemical conditions existing in fumarolic environments and may be used not only to model exhalative processes, but also to predict possible mineral phases that may form in fumaroles. In particular, the K analogue of ilinskite is not known in nature, whereas it may well form from volcanic gases in a K-rich local geochemical environment.

References

  1. Bastide B, Millet P, Johnsson M, Galy J (2000) Synthesis of copper(II) and selenium(IV) oxochlorides by chemical transport reaction: crystal structure of Cu9O2(SeO3)4Cl6. Mater Res Bull 35:847–855CrossRefGoogle Scholar
  2. Berdonosov PS, Janson O, Olenev AV, Krivovichev SV, Rosner H, Dolgikh VA, Tsirlin AA (2013) Crystal structures and variable magnetism of PbCu2(XO3)2Cl2 with X = Se, Te. Dalton Trans 42:9547–9554CrossRefGoogle Scholar
  3. Berdonosov PS, Olenev AV, Dolgikh VA (2009) Strontium–copper selenite–chlorides: synthesis and structural investigation. J Solid State Chem 182:2368–2373CrossRefGoogle Scholar
  4. Binnewies M, Glaum R, Schmidt M, Schmidt P (2013) Chemical vapor transport reactions—a historical review. Z Anorg Allg Chem 639:219–229CrossRefGoogle Scholar
  5. Brese NE, O’Keeffe M (1991) Bond-valence parameters for solids. Acta Crystallogr B47:192–197CrossRefGoogle Scholar
  6. Burns PC, Hawthorne FC (1995) Coordination-geometry structural pathways in Cu2+ oxysalt minerals. Can Mineral 33:889–905Google Scholar
  7. Burns PC, Krivovichev SV, Filatov SK (2002) New Cu2+ coordination polyhedra in the crystal structure of burnsite, KCdCu7O2(SeO3)2Cl9. Can Mineral 40:1587–1595CrossRefGoogle Scholar
  8. Chukanov NV, Murashko MN, Zadov AE, Bushmakin AF (2007) Avdoninite, K2Cu5Cl8(OH)4 · H2O, a new mineral species from volcanic exhalations and the technogenic zone at volcanic-hosted massive sulfide deposits. Geol Ore Depos 49:505–508CrossRefGoogle Scholar
  9. Demartin F, Castellano C, Campostrini I (2013) Aluminopyracmonite, (NH4)3Al(SO4)3, a new ammonium aluminium sulfate from La Fossa Crater, Vulcano, Aeolian Islands, Italy. Mineral Mag 77:443–451CrossRefGoogle Scholar
  10. Demartin F, Castellano C, Campostrini I (2014) Therasiaite, (NH4)3KNa2Fe2+Fe3+(SO4)3Cl5, a new sulfate chloride from La Fossa Crater, Vulcano, Aeolian islands, Italy. Mineral Mag 78:203–213CrossRefGoogle Scholar
  11. Effenberger H (1984) Verfeinerung der Kristallstruktur von Kupfer(II)-hydroxichlorid, Cu(OH)Cl. Monatsh Chem 115:725–730CrossRefGoogle Scholar
  12. Effenberger H (1985) Cu(SeO2OH)2: synthesis and crystal structure. Z Kristallogr 173:167–272CrossRefGoogle Scholar
  13. Effenberger H (1986) PbCu3(OH)(NO3)(SeO3)3·1/2H2O und Pb2Cu3O2(NO3)2(SeO3)2: synthese und Kristallstrukturuntersuchung. Monatsh Chem 117:1099–1106CrossRefGoogle Scholar
  14. Effenberger H, Pertlik F (1986) Die Kristallstrukturen der Kupfer(II)-oxo-selenite Cu2O(SeO3) (kubisch und monoklin) und Cu4O(SeO3)3 (monoklin und triklin). Monatsh Chem 117:887–896CrossRefGoogle Scholar
  15. Filatov SK, Semenova TF, Vergasova LP (1992) Types of polymerization of [OCu4]6+ in inorganic compounds with “additional” oxygen atoms. Dokl Akad Nauk SSSR (in russian) 322:539–539Google Scholar
  16. Garavelli A, Mitolo D, Pinto D, Vurro F (2013) Lucabindiite, (K,NH4)As4O6(Cl,Br), a new fumarole mineral from the “La Fossa” crater at Vulcano, Aeolian Islands, Italy. Am Mineral 98:470–477Google Scholar
  17. Hawthorne FC, Cooper MA, Grice JD, Roberts AC, Hubbard N (2002) Description and crystal structure of bobkingite, Cu2+ 5Cl2(OH)8(H2O)2, a new mineral from New Cliffe Hill Quarry, Stanton-under-Bardon, Leicestershire, UK. Mineral Mag 66:301–311CrossRefGoogle Scholar
  18. Kahlenberg V (2004) On the crystal structure of K2Cu5Cl8(OH)4·2H2O. Z Anorg Allg Chem 630:900–903CrossRefGoogle Scholar
  19. Karpov GA, Krivovichev SV, Vergasova LP, Chernyat'eva AP, Anikin LP, Moskaleva SV, Filatov SK (2013) Oxysulfates of copper, sodium, and potassium in the lava flows of the 2012–2013 Tolbachik Fissure Eruption. J Volcanol Seismol 7:362–370CrossRefGoogle Scholar
  20. Kovrugin VM, Colmont M, Mentré O, Siidra OI, Krivovichev SV (2015) Dimers of oxocentered [OCu4]6+ tetrahedra in two novel copper selenite chlorides, K[Cu3O](SeO3)2Cl and Na2[Cu7O2](SeO3)4Cl4, and related minerals and inorganic compounds. Mineral Mag: submittedGoogle Scholar
  21. Krivovichev SV, Filatov SK (1999) Structural principles for minerals and inorganic compounds containing anion-centered tetrahedra. Am Mineral 84:1099–1106Google Scholar
  22. Krivovichev SV, Filatov SK, Semenova TF, Rozhdestvenskaya IV (1998) Crystal chemistry of inorganic compounds based on chains of oxocenterd tetrahdera. I. Crystal structure of chloromenite, Cu9O2(SeO3)4Cl6. Z Krist 213:645–649CrossRefGoogle Scholar
  23. Krivovichev SV, Shuvalov RR, Semenova TF, Filatov SK (1999a) Crystal chemistry of inorganic compounds based on chains of oxocentered tetrahedra. III. Crystal structure of georgbokiite, Cu5O2(SeO3)2Cl2. Z Krist 214:135–138CrossRefGoogle Scholar
  24. Krivovichev SV, Starova GL, Filatov SK (1999b) “Face-to-face” relationships between oxocentred tetrahedra and cation-centred tetrahedral oxyanions in crystal structures of minerals and inorganic compounds. Mineral Mag 63:263–266CrossRefGoogle Scholar
  25. Krivovichev SV, Filatov SK, Armbruster T, Pankratova OY (2004) Crystal structure of Cu(I)Cu(II) 4O(SeO3)Cl5, a new heterovalent copper compound. Dokl Chem 399:226–228CrossRefGoogle Scholar
  26. Krivovichev SV, Filatov SK, Burns PC, Vergasova LP (2006) The crystal structure of allochalcoselite, Cu+Cu2+ 5PbO2(SeO3)2Cl5, a mineral with well-defined Cu+ and Cu2+ positions. Can Mineral 44:507–514CrossRefGoogle Scholar
  27. Krivovichev SV, Filatov SK, Burns PC, Vergasova LP (2007) The crystal structure of parageorgbokiite, β–Cu5O2(SeO3)2Cl2. Can Mineral 45:929–934CrossRefGoogle Scholar
  28. Krivovichev SV, Vergasova LP, Filatov SK, Rybin DS, Britvin SN, Ananiev VV (2013a) Hatertite, Na2(Ca, Na)(Fe3+, Cu)2(AsO4)3, a new alluaudite-group mineral from Tolbachik fumaroles, Kamchatka peninsula, Russia. Eur J Mineral 25:683–691CrossRefGoogle Scholar
  29. Krivovichev SV, Mentré O, Siidra OI, Colmont M, Filatov SK (2013b) Anion-centered tetrahedra in inorganic compounds. Chem Rev 113:6459–6535CrossRefGoogle Scholar
  30. Krivovichev SV, Filatov SK, Vergasova LP (2013c) The crystal structure of ilinskite, NaCu5O2(SeO3)2Cl3, and review of mixed-ligand CuOmCln coordination geometries in minerals and inorganic compounds. Mineral Petrol 107:235–242CrossRefGoogle Scholar
  31. Millet P, Bastide B, Pashchenko V, Gnatchenko S, Ksari Y, Stepanov A (2001) Syntheses, crystal structures and magnetic properties of francisite compounds Cu3Bi(SeO3)2O2 X (X = Cl, Br and I). J Mater Chem 11:1152–1157CrossRefGoogle Scholar
  32. Mitolo D, Demartin F, Garavelli A, Campostrini I, Pinto D, Gramaccioli CM, Acquafredda P, Kolitsch U (2013) Adranosite-(Fe), (NH4)4NaFe2(SO4)4Cl(OH)2, a new ammonium sulfate chloride from La Fossa Crater, Vulcano, Aeolian Islands, Italy. Can Mineral 51:57–66CrossRefGoogle Scholar
  33. Murashko MN, Pekov IV, Krivovichev SV, Chernyatyeva AP, Yapaskurt VO, Zadov AE, Zelensky ME (2013) Steklite, KAl(SO4)2: a finding at the Tolbachik Volcano, Kamchatka, Russia, validating its status as a mineral species and crystal structure. Geol Ore Depos 55:594–600CrossRefGoogle Scholar
  34. Pekov IV, Zelenski ME, Yapaskurt VO, Polekhovsky YS, Murashko MN (2013a) Starovaite, KCu5O(VO4)3, a new mineral from fumarole sublimates of the Tolbachik volcano, Kamchatka, Russia. Eur J Mineral 25:91–96CrossRefGoogle Scholar
  35. Pekov IV, Zubkova NV, Yapaskurt VO, Belakovskiy DI, Chukanov NV, Lykova IS, Sidorov EG, Pushcharovsky DY (2013b) Wulffite. IMA 2013-035. CNMNC Newsletter No. 17. Mineral Mag 77:2998Google Scholar
  36. Pekov IV, Zubkova NV, Yapaskurt VO, Belakovskiy DI, Chukanov NV, Lykova IS, Sidorov EG, Pushcharovsky DY (2013c) Parawulffite, IMA 2013–036. CNMNC Newsletter No. 17. Mineral Mag 77:2998Google Scholar
  37. Pekov IV, Zubkova NV, Zelenski ME, Yapaskurt VO, Polekhovsky YS, Fadeeva OA, Pushcharovsky DY (2013d) Yaroshevskite, Cu9O2(VO4)4Cl2, a new mineral from the Tolbachik volcano, Kamchatka, Russia. Mineral Mag 77:107–116CrossRefGoogle Scholar
  38. Pekov IV, Siidra OI, Chukanov NV, Yapaskurt VO, Belakovskiy DI, Murashko MN, Sidorov EG (2014a) Kaliochalcite, KCu2(SO4)2[(OH)(H2O)], a new tsumcorite-group mineral from the Tolbachik volcano, Kamchatka, Russia. Eur J Mineral 26:597–604CrossRefGoogle Scholar
  39. Pekov IV, Zubkova NV, Yapaskurt VO, Belakovskiy DI, Lykova IS, Vigasina MF, Sidorov EG, Pushcharovsky DYu (2014b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. I. Yurmarinite, Na7(Fe3+,Mg,Cu)4(AsO4)6. Mineral Mag 78:905–917Google Scholar
  40. Pekov IV, Zubkova NV, Yapaskurt VO, Kartashov PM, Polekhovsky YS, Murashko MN, Pushcharovsky DY (2014c) Koksharovite, CaMg2Fe3+ 4(VO4)6, and grigorievite, Cu3Fe3+ 2Al2(VO4)6, two new howardevansite-group minerals from volcanic exhalations. Eur J Mineral 26:667–677CrossRefGoogle Scholar
  41. Pertlik F, Zemann J (1988) The crystal structure of nabokoite, Cu7TeO4(SO4)5 · KCl: the first example of a Te(IV)O4 pyramid with exactly tetragonal symmetry. Mineral Petrol 38:291–298CrossRefGoogle Scholar
  42. Pinto D, Garavelli A, Mitolo D (2014) Balićžunićite, Bi2O(SO4)2, a new fumarole mineral from La Fossa crater, Vulcano, Aeolian Islands, Italy. Mineral Mag 78:1043–1055Google Scholar
  43. Pring A, Gatehouse BM, Birch WD (1990) Francisite, Cu3Bi(SeO3)2O2Cl, a new mineral from Iron Monarch, South Australia: description and crystal structure. Am Mineral 75:1421–1425Google Scholar
  44. Scordari F, Stasi F (1990) The crystal structure of euchlorine, NaKCu3O(SO4)3. N Jb Mineral Abh 161:241–253Google Scholar
  45. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A32:751–767CrossRefGoogle Scholar
  46. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A64:112–122Google Scholar
  47. Shuvalov RR, Vergasova LP, Semenova TF, Filatov SK, Krivovichev SV, Siidra OI, Rudashevsky NS (2013) Prewittite, KPb1.5Cu6Zn(SeO3)2O2Cl10, a new mineral from Tolbachik fumaroles, Kamchatka peninsula, Russia: description and crystal structure. Am Mineral 98:463–469CrossRefGoogle Scholar
  48. Siidra OI, Krivovichev SV, Armbruster T, Pekov IV (2007) The crystal structure of leningradite, PbCu3(VO4)2Cl2. Can Mineral 45:445–449CrossRefGoogle Scholar
  49. Siidra OI, Krivovichev SV, Turner RW, Rumsey MS (2008) Chloroxiphite Pb3CuO2(OH)2Cl2: structure refinement and description in terms of oxocentred OPb4 tetrahedra. Mineral Mag 72:793–798CrossRefGoogle Scholar
  50. Starova GL, Filatov SK, Vergasova LP (1991) The crystal structure of fedotovite, K2Cu3O(SO4)3. Mineral Mag 55:613–616CrossRefGoogle Scholar
  51. Starova GL, Krivovichev SV, Fundamensky VS, Filatov SK (1997) The crystal structure of averievite, Cu5O2(VO4)2·nMX; comparison with related compounds. Mineral Mag 61:441–446CrossRefGoogle Scholar
  52. Takagi R, Duc F, Johnsson M (2006) MoCu3TeO7Cl2·0.5H2O. Acta Crystallogr C62:i16–i18Google Scholar
  53. Vergasova LP, Filatov SK, Serafimova YK, Varaksina TV (1988) Kamchatkite KCu3OCl(SO4)2—a new mineral from volcanic sublimates. Zap VMO 117:459–461Google Scholar
  54. Vergasova LP, Semenova TF, Shuvalov RR, Filatov SK, Ananiev VV (1997) Ilinskite NaCu5O2(SeO3)2Cl3—a new mineral of volcanic exhalations. Dokl Akad Nauk (in russian) 353:641–644Google Scholar
  55. Vergasova LP, Semenova TF, Krivovichev SV, Filatov SK, Zolotarev Jr AA, Ananiev VV (2014) Nicksobolevite, Cu7(SeO3)2O2Cl6, a new complex copper oxoselenite chloride from Tolbachik fumaroles, Kamchatka peninsula, Russia. Eur J Mineral 26:439–449CrossRefGoogle Scholar
  56. Zhang D, Berger H, Kremer RK, Wulfering D, Lemmens P, Johnsson M (2010) Synthesis, crystal structure, and magnetic properties of the copper selenite chloride Cu5(SeO3)4Cl2. Inorg Chem 49:9683–9688CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Vadim M. Kovrugin
    • 1
    • 2
  • Oleg I. Siidra
    • 2
  • Marie Colmont
    • 1
  • Olivier Mentré
    • 1
  • Sergey V. Krivovichev
    • 2
  1. 1.UCCS, ENSCL, Université Lille 1, CNRS, UMR 8181Villeneuve d’AscqFrance
  2. 2.Department of Crystallography, Institute of Earth SciencesSt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations