Mineralogy and Petrology

, Volume 109, Issue 4, pp 453–462 | Cite as

Phase transformation of Mg-calcite to aragonite in active-forming hot spring travertines

Original Paper

Abstract

A travertine specimen collected from the western part of Yunnan Province of China was subjected to microstructural analysis by powder X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy and energy dispersive X-ray spectroscopy. A new formation mechanism was proposed whereby polycrystalline rhombohedral particles of magnesium-containing calcite underwent a phase transformation into sheaf-like clusters of aragonite microrods. It is proposed that a high concentration of magnesium ions and embedded biological matter poisoned the growth of calcite and therefore instigated the phase transformation of the core of the rhombohedral calcite particles to an aragonite phase with a higher crystallinity. The single crystalline aragonite microrods with a higher density than the Mg-calcite nanocrystallites grew at the expense of the latter to generate sheaf-like clusters. This newly discovered formation mechanism is expected to enhance previous knowledge on this geologically important phase transformation from a morphology point of view.

References

  1. Allen CC, Albert FG, Chafetz HS, Combie J, Graham CR, Kieft TL, Kivett SJ, McKay DS, Steele A, Taunton AE, Taylor MR, Thomas-Keprta KL, Westall F (2000) Microscopic physical biomarkers in carbonate hot springs: implications in the search for life on mars. Icarus 147:49–67CrossRefGoogle Scholar
  2. Andersson AJ, Mackenzie FT, Bates NR (2008) Life on the margin: implications of ocean acidification on Mg-calcite, high latitude and cold-water marine calcifiers. Mar Ecol Prog Ser 373:265–273CrossRefGoogle Scholar
  3. Arp G, Reimer A, Reitner J (2001) Photosynthesis-induced biofilm calcification and calcium concentrations in phanerozoic oceans. Science 292:1701–1704CrossRefGoogle Scholar
  4. Atkins P, De Paula J (2010) Atkins’ Physical Chemistry. 9th Ed., OxfordGoogle Scholar
  5. Bravais A (1866) Études Crystallographiques. Gauthier-Villars, ParisGoogle Scholar
  6. Capezzuoli E, Gandin A, Pedley M (2014) Decoding tufa and travertine (fresh water carbonates) in the sedimentary record: the state of art. Sedimentology 61:1–21CrossRefGoogle Scholar
  7. Chen XY, Qiao MH, Xie SH, Fan KN, Zhou WZ, He HY (2007) Self-construction of core–shell and hollow zeolite analcime icositetradedral: a reversed crystal growth process via oriented aggregation of nanocrystallites and recrystallization from surface to core. J Am Chem Soc 129:13305–13312CrossRefGoogle Scholar
  8. Curie P (1885) Sur la formation des cristaux et sur les constants capillaires de leurdifférentes faces. Bull Soc Fr Minéral Cristallogr 8:145–150Google Scholar
  9. de Choudens-Sánchez V, González LA (2009) Calcite and aragonite precipitation under controlled instantaneous supersaturation: elucidating the role of CaCO3 saturation state and Mg/Ca ratio on calcium carbonate polymorphism. J Sediment Res 79:363–376CrossRefGoogle Scholar
  10. Donnay JDH, Harker D (1937) A new law of crystal morphology extending the law of Bravis. Am Mineral 22:446–467Google Scholar
  11. Folk RL (1974) The natural history of crystalline calcium carbonate; effect of magnesium content and salinity. J Sediment Res 44:40–53Google Scholar
  12. Friedel MG (1907) Étudessurla loi de bravais. Bull Soc Fr Minéral Cristallogr 30:326–455Google Scholar
  13. Hacker BR, Kirby SH, Bohlen SR (1992) Time and metamorphic petrology: calcite to aragonite experiments. Science 258:110–112CrossRefGoogle Scholar
  14. Hacker BR, Rubie DC, Kirby SH, Bohlen SR (2005) The calcite → aragonite transformation in low-Mg marble: equilibrium relations, transformation mechansims, and rates. J Geophys Res-Sol 110, B03205Google Scholar
  15. Han YS, Hadiko G, Fuji M, Takahashi M (2006) Crystallization and transformation of vaterite at controlled pH. J Cryst Growth 289:269–274CrossRefGoogle Scholar
  16. Hartman P, Perdok WG (1955) On the relations between structure and morphology of crystals. II. Acta Crystallogr 8:521–524CrossRefGoogle Scholar
  17. Jin D, Wang F, Yue L (2011) Phase and morphology evolution of vaterite crystals in water/ethanol binary solvent. Cryst Res Technol 46:140–144CrossRefGoogle Scholar
  18. Jones B, Renaut RW (2008) Cyclic development of large, complex, calcite dendrite crystals in the Clinton travertine, interior British Columbia, Canada. Sediment Geol 203:17–35CrossRefGoogle Scholar
  19. Kawano J, Shimobayashi N, Miyake A, Kitamura M (2009) Precipitation diagram of calcium carbonate polymorphs: its construction and significance. J Phys Condens Matter 21:425102–425107CrossRefGoogle Scholar
  20. Kroch A, Nebelsick JH (2010) Echinoderms and oligo-miocene carbonate systems: potential applications in sedimentology and environmental reconstruction. Int Assoc Sedimentol Spec Publ 42:201–228Google Scholar
  21. Lin S-J, Huang W-L (2004) Polycrystalline calcite to aragonite transformation kinetics: experiments in synthetic systems. Contrib Mineral Petrol 147:604–614CrossRefGoogle Scholar
  22. Loste E, Wilson RM, Seshadri R, Meldrum FC (2003) The role of magnesium in stabilising amorphous calcium carbonate and controlling calcite morphologies. J Cryst Growth 254:206–218CrossRefGoogle Scholar
  23. Mackenzie FT, Bischoff WD, Bishop FC, Loijens M, Schoonmaker J, Wollast R (1983) Magnesium calcites; low temperature occurrence, solubility and solid state behaviour. Rev Mineral Geochem 11:97–144Google Scholar
  24. Nielsen LC, de Yoreo JJ, DePaolo DJ (2013) General model for calcite growth kinetics in the presence of impurity ions. Geochim Cosmochim Acta 115:100–114CrossRefGoogle Scholar
  25. Nindiyasari F, Griesshaber E, Fernández-Díaz L, Astilleros JM, Sánchez-Pastor N, Ziegler A, Schmahl WW (2014) Effects of Mg and hydrogel solid content on the crystallisation of calcite carbonate in biomimetic counter-diffusion systems. Cryst Growth Des. doi:10.1021/cg500938k Google Scholar
  26. Ostwald W (1896) Lehrbuch der Allgemeinen Chemie. W. Engelmann, Leipzig, Germany, Vol. 2, Part 1Google Scholar
  27. Pentecost A (1985) Association of cyanobacteria with tufu deposits: identity, enumeration and nature of the sheath material revealed by histochemistry. Geomicrobiol J 4:285–298CrossRefGoogle Scholar
  28. Pentecost A (2005) Travertine. Springer, The NetherlandsGoogle Scholar
  29. Perdikouri C, Piazolo S, Kasioptas A, Schmidt BC (2013) Hydrothermal replacement of aragonite by calcite: interplay between replacement, fracturing and growth. Eur J Mineral 25:123–136CrossRefGoogle Scholar
  30. Plee K, Ariztegui D, Martini R, Davaud E (2008) Unravelling the microbial role in ooid formation – results of an in situ experiment in modern freshwater Lake Geneva in Switzerland. Geobiology 6:341–350CrossRefGoogle Scholar
  31. Raz S, Weiner S, Addadi L (2000) Formation of high-magnesian calcites via an amorphous precursor phase: possible biological implications. Adv Mater 12:38–42CrossRefGoogle Scholar
  32. Raz S, Hamilton PC, Wilt FH, Weiner S, Addadi L (2003) The transient phase of amorphous calcium carbonate in sea urchin larval spicules: the involvement of proteins and magnesium ions in its formation and stabilization. Adv Funct Mater 13:480–486CrossRefGoogle Scholar
  33. Ruan X, Li L, Liu J (2013) Flocculating characteristic of activated sludge flocs: interaction btween Al3+ and extracellular substances (EPS). J Environ Sci 25:916–924CrossRefGoogle Scholar
  34. Schroeder JH, Dwornik EJ, Papike JJ (1969) Primary protodolomite in echinoid skeletons. Geol Soc Am Bull 80:1613–1616CrossRefGoogle Scholar
  35. Vu B, Chen M, Crawford RJ, Ivanova EP (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14:2535–2554CrossRefGoogle Scholar
  36. Wulff G (1901) Zur frage der geschwindigkeit des wachstums und der auflösung der kristallflächen. Z Kristallogr 34:449–530Google Scholar
  37. Yang XF, Fu JX, Jin CJ, Chen J, Liang CL, Wu MM, Zhou WZ (2010) Formation mechanism of CaTiO3 hollow crystals with different microstructures. J Am Chem Soc 132:14279–14287CrossRefGoogle Scholar
  38. Yuan D, Wang Y (2013) Effects of solution conditions on the physicochemical properties of stratification components of extracellular polymeric substances in anaerobic digested sludge. J Environ Sci 25:155–162CrossRefGoogle Scholar
  39. Zhou G-T, Yao Q-Z, Ni J, Jin G (2009) Formation of aragonite mesocrystals and implication for biomineralization. Am Mineral 94:293–302CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.School of ChemistryUniversity of St AndrewsFifeUK
  2. 2.Department of Earth SciencesUniversity of CambridgeCambridgeUK

Personalised recommendations