Mineralogy and Petrology

, Volume 109, Issue 2, pp 217–234 | Cite as

Melting, fluid migration and fluid-rock interactions in the lower crust beneath the Bakony-Balaton Highland volcanic field: a silicate melt and fluid inclusion study

  • B. NémethEmail author
  • K. Török
  • I. Kovács
  • Cs. Szabó
  • R. Abart
  • J. Dégi
  • J. Mihály
  • Cs. Németh
Original Paper


Plio-Pleistocene alkali basalt hosted mafic garnet granulite xenoliths were studied from the Bakony-Balaton Highland Volcanic Field (BBHVF) to trace fluid-melt-rock interactions in the lower crust. Two unique mafic garnet granulite samples were selected for analyses (optical microscopy, microthermometry, electron microprobe, Raman and IR spectroscopy), which contain a clinopyroxene-plagioclase vein and patches with primary silicate melt inclusions (SMI). The samples have non-equilibrium microtexture in contrast with the overwhelming majority of previously studied mafic garnet granulite xenoliths. Primary silicate-melt inclusions were observed in plagioclase, clinopyroxene and ilmenite in both xenoliths. The SMI-bearing minerals located randomly in Mi26 and in a clinopyroxene-plagioclase vein on the edge of Sab38 granulites. Petrography and the fluid and melt inclusion study suggest that at least three fluid events occurred in the deep crust represented by these xenoliths. 1. Primary CO2-dominated ± CO ± H2S fluid inclusions were observed in the wall-rock part of Sab38 xenolith. 2. The crystallization of new clinopyroxene from melt, with CO2 + H2O fluid. 3. The crystallization of new plagioclase occurred in a heterogeneous fluid-melt system with additional N2 and CH4 during crystallization. A local reaction was observed between sphene and acidic melt, which formed ilmenite + clinopyroxene + plagioclase ± orthopyroxene. The ‘water’ content of the rock forming minerals was determined by infrared spectroscopy. The calculated bulk ‘water’ content of the Mi26 xenolith is 171 ± 51 ppm wt. %. The bulk wall rock part of the Sab38 granulite contains 55 ± 17 ppm wt. % of ‘water’, whereas the bulk plagioclase-clinopyroxene vein contains 278 ± 83 ppm wt. %. These results imply a very dry lower crust, locally hydrated by percolating fluids and melts.


Fluid Inclusion Ilmenite Lower Crust Pannonian Basin Mafic Granulite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank for the financial support of OTKA NN 79943 to K. Török, and for the support of REG_KM_INFRA_09 Gábor Baross Programme which made possible the Raman analyses. I.K greatly acknowledges the support of MC IRG (NAMs-230937) and OTKA PD101683 grants for the IR analyses.

This is the publication N 72 of the LRG, ELTE in collaboration with MFGI. The authors acknowledge the critical comments of the two anonymous referees, which helped us to improve this manuscript.

Supplementary material (9.6 mb)
ESM 1 (ZIP 9.55 mb)


  1. Ai Y (1994) A revision of the garnet-clinopyroxene Fe2+-Mg exchange geothermometer. Contrib Mineral Petrol 115:467–473CrossRefGoogle Scholar
  2. Balogh K, Árva-Sós E, Pécskay Z, Ravasz-Baranyai L (1986) K/Ar dating of Post-Sarmatian alkali basaltic rocks in Hungary. Acta Mineral Petrol 28:75–84Google Scholar
  3. Balogh K, Lobitzer H, Pécskay Z, Ravasz Cs (1990) K/Ar date of tertiary alkaline basalts from Burgenland and Eastern-Styrian Basin. Annual report of the Hungarian Geological Survey from the year of 1988. 1st part 451-X./ 0.000(0) (in Hungarian)Google Scholar
  4. Bell DR, Ihinger PD, Rossmann GR (1995) Quantitative-analysis of trace OH in garnet and pyroxenes. Am Mineral 80(5–6):465–474Google Scholar
  5. Berkesi M, Hidas K, Guzmics T, Dubessy J, Bodnar RJ, Cs S, Vajna B, Tsunogae T (2009) Detection of small amounts of H2O in CO2-rich fluid inclusions using Raman spectroscopy. J Raman Spectrosc 40:1461–1463CrossRefGoogle Scholar
  6. Csontos L, Vörös A (2004) Mesozoic plate tectonic reconstruction of the Carpathian region. Palaeogeogr Palaeoclimatol Palaeoecol 210(1):1–56CrossRefGoogle Scholar
  7. Dégi J (2009) Detailed study of mafic lower crustal xenoliths from the Bakony–Balaton Highland Volcanic Field; relationships between metamorphic processes in the lower crust and the formation of the Pannonian Basin. unpubl. PhD Thesis, Eötvös UniversityGoogle Scholar
  8. Dégi J, Török K (2003) Petrographic evidence of crustal thinning in Bakony–Balaton Highland Volcanic Field (in Hungarian). Magyar Geofiz 44:125–133Google Scholar
  9. Dégi J, Abart R, Török K, Rhede D, Petrischeva E (2009) Evidence for xenolith – host basalt interaction from chemical patterns in Fe–Ti-oxides from mafic granulite xenoliths of the Bakony–Balaton Volcanic field (W-Hungary). Mineral Petrol 95:219–234CrossRefGoogle Scholar
  10. Dégi J, Abart R, Török K, Bali E, Wirth R, Rhede D (2010) Symplectite formation during decompression induced garnet breakdown in lower crustal mafic granulite xenoliths: mechanisms and rates. Contrib Mineral Petrol 159:293–314CrossRefGoogle Scholar
  11. Dobosi G, Kempton P, Downes H, Embey-Isztin A, Thirlwall M, Greenwood P (2003) Lower crustal xenoliths from the Pannonian Basin, Hungary. Part 2: Sr-Nd-Pb-Hf and O isotope evidence for formation of continental lower crust by tectonic emplacement of oceanic crust. Contrib Mineral Petrol 144:671–683CrossRefGoogle Scholar
  12. Dubessy J, Boiron MC, Moissette A, Monnin C, Sretenskaya N (1992) Determination of water, hydrates and pH in fluid inclusions by micro-Raman spectrometry. Eur J Mineral 4:885–894CrossRefGoogle Scholar
  13. Eckert JO Jr, Newton RC, Kleppa OJ (1991) The ∆H of reaction and recalibration of garnet-pyroxene-plagioclase-quartz geobarometers in the CMAS system by solution calorimetry. Am Mineral 76:148–160Google Scholar
  14. Embey-Isztin A (1976) Amphibolite/lherzolite composite xenolith from Szigliget, north of the Lake Balaton, Hungary. Earth Planet Sci Lett 31:297–304CrossRefGoogle Scholar
  15. Embey-Isztin A, Scharbert HG, Dietrich H, Poultidis H (1990) Mafic granulites and clinopyroxenite xenoliths from the Transdanubian Volcanic Region (Hungary): implications for the deep structure of the Pannonian Basin. Mineral Mag 54:463–483CrossRefGoogle Scholar
  16. Embey-Isztin A, Downes H, Kempton P, Dobosi G, Thrilwall M (2003) Lower crustal xenoliths from the Pannonian Basin, Hungary. Part 1: mineral chemistry, thermobarometry and petrology. Contrib Mineral Petrol 144:652–670CrossRefGoogle Scholar
  17. Fodor L, Csontos L, Bada G, Győrfi I, Benkovics L (1999) Tertiary tectonic evolution of the Pannonian basin system and neighbouring orogens, a new synthesis of paleostress data, in: Durand B, Jolivet L, Horváth F, Séranne M (Eds.), The Mediterranean basins: Tertiary extension within the Alpine orogen. Geol Soc London Spec Publ 156:295–334Google Scholar
  18. Grant KJ, Brooker RA, Kohn SC, Wood BJ (2007) The effect of oxygen fugacity on hydroxyl concentrations and speciation in olivine: implications for water solubility in the upper mantle. Earth Planet Sci Lett 261:217–229CrossRefGoogle Scholar
  19. Harangi S (2001) Neogene to quartenary volcanism of the Carpatian-Pannonian Region. A Rev: Acta Geol Hung 44:223–258Google Scholar
  20. Harangi S, Wilson M, Tonarini S (1995) Petrogenesis of Neogene potassic volcanic rocks in the Pannonian Basin. Acta Vulcanol 7:125–134Google Scholar
  21. Hidas K, Guzmics T, Cs S, Kovács I, Bodnar RJ, Zajacz Z, Zs N, Vaccari L, Perucchi A (2010) Coexisting silicate melt inclusions and H2O-bearing, CO2-rich fluid inclusions in mantle peridotite xenoliths from the Carpathian-Pannonian region (central Hungary). Chem Geol 274:1–18CrossRefGoogle Scholar
  22. Horváth F, Bada G, Szafián P, Tari G, Ádám A, Cloetingh S (2006) Formation and deformation of the Pannonian basin: constraints from observational data. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics, vol 32, Geol Soc London Mem., pp 191–206Google Scholar
  23. Huismans RS, Podladchikov YY, Cloetingh S (2001) Dynamic modeling of the transition from passive to active rifting, application to the Pannonian basin. Tectonics 20:1021–1039CrossRefGoogle Scholar
  24. Irving AJ (1974) Geochemical and high-pressure experimental studies of garnet pyroxenite and pyroxene granulite xenoliths from the Delegate Basaltic pipes, Australia. J Petrol 15:1–40CrossRefGoogle Scholar
  25. Johannes W, Koepke J (2001) Incomplete reaction of plagioclase in experimental dehydration melting of amphibolite. Aust J Earth Sci 48:581–590CrossRefGoogle Scholar
  26. Johnson EA, Rossman GR (2003) The concentration and speciation of hydrogen in feldspars using FTIR and 1H MAS NMR spectroscopy. Am Mineral 88:901–911Google Scholar
  27. Jugovics L (1968) Structure of the basalt regions in the Balaton Highland. Yearly report of the Hungarian geological institute. Hungarian Geological Institute, Budapest, pp 75–82Google Scholar
  28. Kázmér M, Kovács S (1985) Permian-Paleogene paleography along the eastern part of the Insubric-Periadriatic Lineament system: evidence for continental escape of the Bakony-Drauzug Unit. Acta Geol Hung 28:71–84Google Scholar
  29. Kempton P, Downes H, Embey-Isztin A (1997) Mafic granulite xenoliths in Neogene alkali basalts from the Western Pannonian Basin: insights into the lower crust of a collapsed orogen. J Petrol 38:941–970CrossRefGoogle Scholar
  30. Kovács I, Szabó C (2005) Geodynamical significance of granulite xenoliths beneath the Nógrád-Gömör Volcanic Field, Carpathian-Pannonian Region (N-Hungary/SSlovakia). Mineral Petrol 85:269–290CrossRefGoogle Scholar
  31. Kovács I, Szabó C (2008) Middle Miocene volcanism in the vicinity of the Middle Hungarian zone: evidence for an inherited enriched mantle source. J Geodyn 45(1):1–17CrossRefGoogle Scholar
  32. Kovács I, Hermann J, O’Neill HSC, Fitz Gerald JD, Sambridge M, Horvath G (2008) Quantitative absorbance spectroscopy with unpolarized light, Part II: experimental evaluation and development of a protocol for quantitative analysis of mineral IR spectra. Am Mineral 93:765–778CrossRefGoogle Scholar
  33. Kovács I, Green DH, Rosenthal A, Hermann J, O’Neill HSC, Hibberson WO, Udvardi B (2012) An experimental study of water in nominally anhydrous minerals in the upper mantle near the water-saturated solidus. J Petrol 53:2037–2093Google Scholar
  34. Kovács I, Falus Gy, Szabó Cs, Kiss J, Fancsik T, Hegedűs E, Pintér Zs, Liptai N, Patkó, L (2013) Integrated geological and geophysical probing of lithospheric dynamics in a young extensional basin (Carpathian- Pannonian Region). 23rd Goldschmidt Conference, August 25–30, 2013, Florence (Italy), USB flash drive (DOI:10.1180/minmag.2013.077.5.11)Google Scholar
  35. Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:277–279Google Scholar
  36. Kushiro I, Yoder HS (1966) Anorthite—forsterite and anorthite—enstatite reactions and their bearing on the basalt—eclogite transformation. J Petrol 7:337–362CrossRefGoogle Scholar
  37. Lexa J, Seghedi I, Németh K, Szakács A, Konečný V, Pécskay Z, Fülöp A, Kovacs M (2010) Neogene-quaternary volcanic forms in the Carpathian-Pannonian region: a review. Cent Eur J Geosci 2:207–270CrossRefGoogle Scholar
  38. Li ZXA, Lee CTA, Peslier AH, Lenardic A, Mackwell SJ (2008) Water contents in mantle xenoliths from the Colorado Plateau and vicinity: implications for the mantle rheology and hydration-induced thinning of continental lithosphere. Geophys Res 113, B09210. doi: 10.1029/2007JB005540 Google Scholar
  39. Mituch E, Posgay K (1972) The crustal structure of Central and Southeastern Europe on the results of explosion seismology; Hungary. Geophys Transact Spec Ed. Eötvös Loránd Geofizikai Intézet, Budapest, pp 118–131Google Scholar
  40. Németh B, Badenszki E, Koller F, Török K, Mogessie A, Szabó Cs (2009) Mid-crustal xenoliths from Beistein, Austria. EGU General Assembly. April 19–24, 2009, Vienna, Geophysical Research Abstracts 11, (EGU2009): 5618Google Scholar
  41. Németh B, Török K, Szabó Cs (2011) Fluid–rock interactions in mafic granulite xenoliths from Bakony – Balaton Highland Volcanic Field. European Current Research on Fluid Inclusions (ECROFI-XXI) August 8–11, 2011, Leoben, Austria, Programme and Abstracts, 150–151Google Scholar
  42. Newton RC, Perkins DIII (1982) Thermodynamic calibration of geobarometers based on the assemblages garnet-plagioclase-orthopyroxene (clinopyroxene)-quartz. Am Mineral 67:203–222Google Scholar
  43. Newton RC, Charlu TV, Kleppa OJ (1977) Thermochemistry of high pressure garnets and clinopyroxenes in the system CaO-MgO-Al2O3-SiO2. Geochim Comochim Acta 41:369–377CrossRefGoogle Scholar
  44. Panaiotu CG, Pécskay Z, Hambach U, Seghedi I, Panaiotu CE, Tetsumaru I, Orleanu M, Szakács A (2004) Short-lived quaternary volcanism in the Persani Mountains (Romania) revealed by combined K-Ar and paleomagnetic data. Geol Carpath 55:333–339Google Scholar
  45. Posgay K, Albu I, Mayerova M, Nakladalova Z, Ibrmajer I, Blizkovski M, Aric K, Gutdeutsch R (1991) Contour map of the Mohorovicic discontinuity beneath Central Europe. Geophys Trans 36:7–13Google Scholar
  46. Roedder E (1984) Fluid inclusions. Rev Mineral 12:1–646CrossRefGoogle Scholar
  47. Sambridge M, Fitz Gerald JD, Kovács I, O’Neill HSC, Hermann J (2008) Quantitative IR spectroscopy with unpolarized light, Part I: physical and mathematical development. Am Mineral 93:751–764CrossRefGoogle Scholar
  48. Szafián P, Tari G, Horváth F, Cloetingh S (1999) Crustal structure of the Alpine–Pannonian transition zone: a combined seismic and gravity study. Int J Earth Sci 88:98–110CrossRefGoogle Scholar
  49. Thomas SM, Koch-Müller M, Reichart P, Rhede D, Thomas R, Wirth R, Matsyuk S (2008) IR calibrations for water determination in olivine, r-GeO2, and SiO2 polymorphs. Phys Chem Miner 36:489–509CrossRefGoogle Scholar
  50. Török K (1995) Garnet breakdown reaction and fluid inclusions in a garnet-clinopyroxenite xenolith from Szentbékkálla (Balaton-Highland, Western Hungary). Acta Vulcanol 7:285–290Google Scholar
  51. Török K (2002) Ultrahigh-temperature metamorphism of a buchitised xenolith from the basaltic tuff of Szigliget (Hungary). Acta Geol Hung 45:175–192CrossRefGoogle Scholar
  52. Török K (2012) On the origin and fluid content of some rare crustal xenoliths and their bearing on the structure and evolution of the crust beneath the Bakony–Balaton Highland Volcanic Field (W-Hungary). Int J Earth Sci 101:1581–1597CrossRefGoogle Scholar
  53. Török K, Dégi J, Marosi G, Szép A (2005) Reduced carbonic fluids in mafic granulite xenoliths from the Bakony-Balaton Highland Volcanic Field, W-Hungary. Chem Geol 223:93–108CrossRefGoogle Scholar
  54. Török K, Dégi J, Marosi Gy (2007) High temperature melting of biotite in CO2 rich environment and formation of orthopyroxene-garnet-plagioclase rocks in the lower crust: A xenolith example from the Bakony-Balaton Highland Volcanic Field (W-Hungary). European Current Research on Fluid Inclusions XIX. 17–20 July 2007, Bern, Abstract Volume, 242Google Scholar
  55. Török K, Németh B, Koller F, Dégi J, Badenszki E, Szabó C, Mogessie A (2014) Evolution of the middle crust beneath the western Pannonian Basin: a xenolith study. Mineral Petrol 108:33–47CrossRefGoogle Scholar
  56. Xia QK, Liu J, Liu SC, Kovács I, Feng M, Dang L (2013) High water content in Mesozoic primitive basalts of the North China Craton and implications for the destruction of cratonic mantle lithosphere. Earth Planet Sci Lett 361:85–97Google Scholar
  57. Xia QK, Yang XZ, Deloule E, Sheng YM, Hao YT (2006) Water in the lower crustal granulite xenoliths from Nushan, eastern China. J Geophys Res 111 (B11202) DOI:10.1029/2006JB004296Google Scholar
  58. Yang XZ, Xia QK, Deloule E, Dallai L, Fan QC, Fend M (2008) Water in minerals of the continental lithospheric mantle and overlying lower crust: a comparative study of peridotite and granulite xenoliths from the North China Craton. Chem Geol 256:33–45CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • B. Németh
    • 1
    • 2
    Email author
  • K. Török
    • 1
  • I. Kovács
    • 1
  • Cs. Szabó
    • 2
  • R. Abart
    • 3
  • J. Dégi
    • 1
  • J. Mihály
    • 4
  • Cs. Németh
    • 4
  1. 1.Geological and Geophysical Institute of HungaryBudapestHungary
  2. 2.Lithosphere Fluid Research Lab, Institute of Geography and Earth SciencesEötvös UniversityBudapestHungary
  3. 3.Department of Lithospheric ResearchUniversity of ViennaViennaAustira
  4. 4.Institute of Molecular Pharmacology, Research Centre for Natural SciencesHungarian Academy of SciencesBudapestHungary

Personalised recommendations