Mineralogy and Petrology

, Volume 109, Issue 1, pp 17–33 | Cite as

Secondary arsenic minerals and arsenic mobility in a historical waste rock pile at Kaňk near Kutná Hora, Czech Republic

  • E. Kocourková-Víšková
  • J. Loun
  • O. Sracek
  • S. Houzar
  • J. Filip
Original Paper


The arsenic mineralization in historical waste rock pile at Kaňk site near Kutná Hora developed over a period of about 500 years. The objective of this study was to determine principal secondary arsenic mineral phases and their environmental stability. The only common primary As-bearing mineral – arsenopyrite - occurs in the mineral assemblage of Kutná Hora base-metal deposit together with quartz, pyrite, sphalerite, and pyrrhotite. Most of arsenic is bound in supergene minerals (scorodite, jarosite-beudantite, bukovskýite, pitticite), which are relatively stable under oxidizing conditions prevailing in the pile. The Kaňk site is a type locality for bukovskýite, kaňkite, zýkaite, and parascorodite. In long-term perspective, the most stable minerals from viewpoint of As-binding appear to be scorodite and beudantite. A higher mobility was observed for As incorporated into jarosite and poorly crystalline to amorphous phases (FeIII -oxyhydroxides, pitticite). This study has not confirmed significant mobility of arsenic within the pile and water infiltrating in recharge periods of the year (late winter-early spring) should not mobilize arsenic at a significant rate. However, monitoring of the stability of secondary As-phases and dissolved arsenic in the environment around the pile is required to avoid future migration of arsenic out of the pile.


Arsenic Pyrite Gypsum Mineral Assemblage Galena 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by the Moravian Museum under the grant of the Ministry of Culture of the Czech Republic as part of its long-term conceptual development programme for research institutions (ref. MK000094862). The authors also acknowledge the support by the Operational Program Research and Development for Innovations – European Regional Development Fund (CZ.1.05/2.1.00/03.0058) of the Ministry of Education, Youth and Sports of the Czech Republic. They also thank Prof. A. Beran and two anonymous reviewers for comments, which helped to improve the manuscript.


  1. Ahmed KM, Bhattacharya P, Hasan MA, Akhter SH, Alam SMM, Bhuyian MAH, Imam MB, Khak AA, Sracek O (2004) Arsenic contamination in groundwater of alluvial aquifers in Bangladesh: an overview. Appl Geochem 19:181–200CrossRefGoogle Scholar
  2. Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd Edition, BalkemaGoogle Scholar
  3. Bhattacharya P, Claesson M, Bundschuh J, Sracek O, Fagerberg J, Jacks G, Martin RA, Del Storniolo A, Thir JM (2006) Distribution and mobility of arsenic in the Río Dulce alluvial aquifers in Santiago del Estero Province. Argentina. Sci Total Environ 358:97–120CrossRefGoogle Scholar
  4. Casiot C, Lebrun S, Morin G, Bruneel O, Personné JC, Elbaz-Poulichet F (2005) Sorption and redox processes controlling arsenic fate and transport in a stream impacted by acid mine drainage. Sci Total Environ 347:122–130CrossRefGoogle Scholar
  5. Čech F, Jansa J, Novák F (1976) Kaňkite, FeAsO4 . 3 ½ H2O, a new mineral. N. Jb. Miner. Mh. 426–436Google Scholar
  6. Craw D, Falconer D, Younson JH (2003) Environmental arsenopyrite stability and dissolution: theory, experiment and field observations. Chem Geol 199:71–82CrossRefGoogle Scholar
  7. Dokoupilová P, Sracek O, Losos Z (2007) Geochemical behaviour and mineralogical transformations during spontaneous combustion of a coal waste pile in Oslavany, Czech Republic. Mineral Mag 71:443–460CrossRefGoogle Scholar
  8. Drahota P, Filippi M (2009) Secondary As minerals in the environment: a review. Environ Int 35:1243–1255CrossRefGoogle Scholar
  9. Filip J, Zbořil R, Schneeweiss O, Zeman J, Černík M, Kvapil P, Otyepka M (2007) Environmental applications of chemically-pure natural ferrihydrite. Environ Sci Technol 41(12):4367–4374CrossRefGoogle Scholar
  10. Filippi M, Machovič V, Drahota P, Böhmová V (2009) Raman microspectroscopy as a valuable additional method to X-ray diffraction and electron microscope/microprobe analysis in the study of iron arsenates in environmental samples. Appl Spectrosc 63(6):621–626CrossRefGoogle Scholar
  11. Forray FL, Smith AML, Navrotsky A, Wright K, Hudson-Edwards KA, Dubbin WE (2014) Synthesis, characterization and thermochemistry of synthetic Pb-As, Pb-Cu and Pb-Zn jarosites. Geochim Cosmochim Acta 127:107–119CrossRefGoogle Scholar
  12. Gieré R, Sidenko NV, Lazareva EV (2003) The role of secondary minerals in controlling the migration of arsenic and metals from high-sulfide wastes (Berikul gold mine, Siberia). Appl Geochem 18:1347–1359CrossRefGoogle Scholar
  13. Gräfe M, Beattie DA, Smith E, Skinner WM, Singh B (2008) Copper and arsenate cosorption at the mineral–water interfaces of goethite and jarosite. J Col Inter Sci 322:399–413CrossRefGoogle Scholar
  14. Kocourková E, Sracek O, Houzar S, Cempírek J, Losos Z, Filip J, Hršelová P (2011) Geochemical and mineralogical control on the mobility of arsenic in a waste rock pile at Dlouhá Ves, Czech Republic. J Geochem Explor 110:61–73CrossRefGoogle Scholar
  15. Kopřiva A, Zeman J, Sracek O (2005) High arsenic concetrations in mining waters at Kaňk, Czech Republik. In: Bundschuh J, Bhattacharya P, Chandrasekharam D (eds) Natural arsenic in groudwater: occurence, remediation and management. A. A. Balkema Publishers, London, pp 49–56Google Scholar
  16. Langmuir D, Mahoney J, Rowson J (2006) Solubility products of amorphous ferric arsenate and crystalline scorodite (FeAsO4.2H2O) and their application to arsenic behavior in buried mine tailings. Geochim Cosmochim Acta 70(12):2942–2956CrossRefGoogle Scholar
  17. Leblanc M, Achard B, Ben Othman D, Bertrand-Sarfati J, Personné JC (1996) Accumulation of arsenic from mine waters by ferruginous bacterial accretions (stromatolites). Appl Geochem 11:541–554CrossRefGoogle Scholar
  18. López DL, Bundschuh J, Birkle P, Armienta MA, Cumbal L, Sracek O, Cornejo L, Ormachea M (2012) Arsenic in volcanic geothermal fluids of Latin America. Sci Total Environ 429:57–75CrossRefGoogle Scholar
  19. Loun J (2010) Secondary As minerals from the dumps at the locality Kaňk near Kutná Hora. Unpublished M.Sc. thesis. Masaryk University Brno (in Czech)Google Scholar
  20. Loun J, Pauliš P, Novák F, Plášil J, Ševců J (2010) Supergene As mineralization of the Stará Plimle mine dump, at Kaňk near Kutná Hora (Czech Republic). Dept Mineral Petrol Nat Mus 18(1):73–77, in CzechGoogle Scholar
  21. Majzlan J, Lalinská B, Chovan M, Jurkovič L, Milovská S, Göttlicher J (2007) The formation, structure, and ageing of As-rich hydrous ferric oxide at abandoned Sb deposit Pezinok (Slovakia). Geochim Cosmochim Acta 71:4206–4220CrossRefGoogle Scholar
  22. Majzlan J, Lazic B, Armbruster T, Johnson MB, White MA, Fisher RA, Plášil J, Loun J, Škoda R, Novák M (2012) Crystal structure, thermodynamic properties, and paragenesis of bukovskýite, Fe2(AsO4)(SO4)(OH) · 9H2O. J Mineral Petrol Sci 107:133–148CrossRefGoogle Scholar
  23. Nickson RT, McArthur J, Ravenscroft P, Burgess WG, Ahmed KM (2000) Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Appl Geochem 15:403–413CrossRefGoogle Scholar
  24. Nordstrom DK (2002) Worldwide occurrences of arsenic in ground water. Science 296:2143–2145CrossRefGoogle Scholar
  25. Nordstrom DK, Alpers CN (1999) Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountains superfund site, California. Proc Natl Acad Sci 96:3455–3462CrossRefGoogle Scholar
  26. Novák F, Povondra P, Vtělenský J (1967) Bukovskýite, Fe3+ 2(AsO4)(SO4)(OH).7H2O, from Kaňk, near Kutná Hora, a new mineral. Acta Univ Carol Geol 4:297–325Google Scholar
  27. Onac BP, Veres DS (2003) Sequence of secondary phosphates deposition in a karst environment: evidence from Magurici Cave (Romania). Eur J Mineral 15:741–745CrossRefGoogle Scholar
  28. Ondruš P, Veselovský F, Hloušek J, Skála R, Vavřín I, Frýda J, Čejka J, Gabašová A (1997) Secondary minerals of the Jáchymov (Joachimstahl) ore district. J Czech Geol Soc 42:3–76Google Scholar
  29. Parviainen A, Lindsey MBJ, Pérez-López R, Gibson BD, Ptacek CJ, Blowes DW, Kokola-Ruskeeniemi K (2012) Arsenic attenuation in tailings at a former Cu-W-As mine, SW Finnland. Appl Geochem 27(12):2289–2299CrossRefGoogle Scholar
  30. Pauliš P (1997) Secondary minerals of Kutná Hora. Mineral, 5, 5: 332–336. Brno. (in Czech)Google Scholar
  31. Pouchou JL, Pichoir F (1985) “PAP” procedure for improved quantitative microanalysis. Microbeam Anal 20:104–105Google Scholar
  32. Romero L, Alonso H, Campano P, Fanfani L, Cidu R, Dadea C, Keegan T, Thornton I, Farago M (2003) Arsenic enrichment in waters and sediments of the Rio Loa (Second Region, Chile). Appl Geochem 18:1399–1416CrossRefGoogle Scholar
  33. Romero FM, Armienta MA, González-Hernández G (2007) Solid-phase control on the mobility of potentially toxic elements in an abandoned lead/zinc mine tailings impoundment, Taxco, Mexico. Appl Geochem 22:109–127CrossRefGoogle Scholar
  34. Salzsauler KA, Sidenko NV, Sheriff BL (2005) Arsenic mobility in alteration products of sulphide-rich, arsenopyrite-bearing mine wastes, Snow Lake, Manitoba, Canada. Appl Geochem 20:2303–2314CrossRefGoogle Scholar
  35. Smedley PL, Kinniburgh DG (2002) A review of source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568CrossRefGoogle Scholar
  36. Smedley PL, Kinniburgh DG, Macdonald DMJ, Nicolli HB, Barro AJ, Tullio JO, Pearce JM, Alonso MS (2005) Arsenic association in sediments from the loess aquifer of La Pampa, Argentina. Appl Geochem 20:989–1016CrossRefGoogle Scholar
  37. Smith AML, Dubbin WE, Wright K, Hudson-Edwards KA (2006) Dissolution of lead- and lead–arsenic–jarosites at pH 2 and 20 °C: insights from batch experiments. Chem Geol 229(4):344–361CrossRefGoogle Scholar
  38. Sracek O, Choquette M, Gélinas P, Lefebre R, Nicholson RV (2004) Geochemical characterization of acid mine drainage from a waste rock pile, Mine Doyon, Québec, Canada. J Contam Hydrol 69(1–2):45–71CrossRefGoogle Scholar
  39. Toujaguez R, Ono FB, Martins V, Cabrera PP, Blanco AV, Bundschuh J, Guillherme LRG (2013) Arsenic bioaccessibility in gold mine tailings of Delita, Cuba. J Hazard Mater 262:1004–1013CrossRefGoogle Scholar
  40. Walker FP, Schreiber ME, Rimstidt JD (2006) Kinetics of pyrite oxidative dissolution by oxygen. Geochim Cosmochim Acta 70:1668–1676CrossRefGoogle Scholar
  41. Weiss W, Šulcek Z, Dempir J (1983) Metody chemické analýzy rudních materiálů, část 1/3 (In Czech: Methods of chemical analyses of ore materials. Part 1/3), Czech Geological Institute, Prague. 458 ppGoogle Scholar
  42. Žák T, Jirásková Y (2006) CONFIT: Mössbauer spectra fitting program. Surf Interface Anal 38:710–714CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • E. Kocourková-Víšková
    • 1
  • J. Loun
    • 2
  • O. Sracek
    • 3
  • S. Houzar
    • 1
  • J. Filip
    • 4
  1. 1.Moravian MuseumBrnoCzech Republic
  2. 2.Institute of Geological Sciences, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  3. 3.Department of Geology, Faculty of SciencePalacký UniversityOlomoucCzech Republic
  4. 4.Regional Centre of Advanced Technologies and Materials, Faculty of SciencePalacký UniversityOlomoucCzech Republic

Personalised recommendations