Mineralogy and Petrology

, Volume 108, Issue 3, pp 391–417 | Cite as

Devonian F-rich peraluminous A-type magmatism in the proto-Andean foreland (Sierras Pampeanas, Argentina): geochemical constraints and petrogenesis from the western-central region of the Achala batholith

  • Juan A. DahlquistEmail author
  • Pablo H. Alasino
  • Carina Bello
Original Paper


A new LA-ICP-MS crystallization age of 370 ± 8 Ma is presented for monzogranite from the Achala batholith, the largest Devonian igneous body in the Sierras Pampeanas, confirming previous U-Pb zircon ages and indicating emplacement within a relatively short episode. Granitic rocks from the central area of the batholith display restricted high SiO2 contents (69.8–74.5 wt.%). Major element plots show ferroan and alkaline-calcic to calc-alkaline compositions with an A-type signature. High concentrations of the high field-strength elements such as Y, Nb, Ga, Ta, U, Th, and flat REE patterns with significant negative Eu anomalies, are also typical of A-type granites. The aluminium saturation index (1.10–1.37) indicates aluminous parent magmas which are further characterised by high FeO/MgO ratios (2.6–3.3) and F contents of igneous biotites (0.9–1.5 wt%), as well as relatively high AlIV (2.39–2.58 a.p.f.u.) in biotites and the occurrence of primary muscovite. Petrogenetic modelling supports a source enriched in plagioclase and progressive fractional crystallization of feldspar. The central area of the batholith displays small-scale bodies composed predominantly of biotite (80 %), muscovite (10 %) and apatite (10 %), yielding rock compositions with 2.3–5.4 wt. % P2O5, and 6–7 wt.% F, together with anomalous contents of U (88–1,866 ppm), Zr (1081–2,581 ppm), Nb (257–1,395 ppm) and ΣREE (1,443–4,492 ppm). Previous studies rule out an origin of these bodies as metasedimentary xenoliths and they have been interpreted as cumulates from the granitic magma. An alternative flow segregation process is discussed here.


Devonian Ordovician Granitic Rock Rare Earth Element Pattern Anhedral Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support was provided by PICT 1009 (FONCyT), PID 2008 MINCyT Cba 000121, PIP CONICET 1940, and a CONICET external fellowship awarded to J.A. Dahlquist for his research stay at Washington State University, supervised for the Professor J. Vervoort. J.A. We thank C. Casquet (UCM) and E. Baldo (CONICET-UNC) for the early discussion about this work. Dahlquist thanks R.J. Pankhurst for his English review and F. Colombo for the analysis using JEOL JXA-8230 electron microprobe. Thorough reviews by two anonymous reviewers and the assistant of the associated editor G. Hoinkes and the editor in Chief R. Abart resulted in a major improvement of the original manuscript. We are very grateful to them.


  1. Abdel Rahman AM (1994) Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas. J Petrol 35:525–541CrossRefGoogle Scholar
  2. Abdel Rahman AM (2006) Petrogenesis of anorogenic peralkaline granitic complexes from eastern Egypt. Mineral Mag 70:27–50Google Scholar
  3. Alasino PH, Dahlquist JA, Pankhurst RJ, Galindo C, Casquet C, Rapela CW, Larrovere M, Fanning CM (2012) Early Carboniferous sub- to mid-alkaline magmatism in the Eastern Sierras Pampeanas. NW Argentina: a record of crustal growth by the incorporation of mantle-derived material in an extensional setting. Gondwana Res 22:992–1008CrossRefGoogle Scholar
  4. Armstrong JT (1988) Quantitative analysis of silicates and oxide minerals: Comparison of Monte-Carlo, ZAF and Phi-Rho-Z procedures. In: Newbury DE (ed) Microbeam analysis. San Francisco Press, California, pp 239–246Google Scholar
  5. Baldo EGA (1992) Estudio petrológico y geoquímico de las rocas ígneas y metamórficas entre Pampa de Olaen y Characato. Extremo norte de la Sierra Grande de Córdoba. República Argentina. Tesis Doctoral (Ph.D.), Universidad Nacional de Córdoba, (unpublished). pp. 305Google Scholar
  6. Bonin (2007) A-type granites and related rocks: evolution of a concept, problems, and prospects. Lithos 97:1–29CrossRefGoogle Scholar
  7. Boudreau AE (1995) Crystal aging and the formation of fine-scale igneous layering. Mineral Petrol 54:55–69CrossRefGoogle Scholar
  8. Boynton WV (1984) Geochemistry of the rare earth elements: Meteorites studies. In: Henderson P (Ed.), Rare earth element geochemistry. Elsevier. 63–114 ppGoogle Scholar
  9. Casquet C, Pankhurst RJ, Rapela CW, Dahlquist J, Baldo EG, Galindo C, Fanning CM (2011) Short-lived plutonism coeval with sediment underplating and high-grade metamorphism in the inner Famatinian magmatic arc of the Sierras Pampeanas, Argentina. VII Hutton Symposium on Granites and Related Rocks: p. 33. Avila, Spain, 4–9 JulyGoogle Scholar
  10. Chang Z, Vervoort JD, McClelland WC, Knaack C (2006) U-Pb dating of zircon by LA-ICP-MS. Geochem Geophys Geosyst 7:1–14CrossRefGoogle Scholar
  11. Chappell BW, White AJR (1992) I- and S- type granites in the Lachlan Fold Belt. Trans R Soc Edinb Earth Sci 83:1–26CrossRefGoogle Scholar
  12. Clarke DB, Dorais M, Barbarin B, Barker D, Cesare B, Clarke G, el Baghdadi M, Erdmann S, Förster H-J, Gaeta M, Gottesmann B, Jamieson RA, Kontak DJ, Koller F, Gomes CL, London D, Morgan VIGB, Neves LJPF, Pattison DRM, Pereira AJSC, Pichavant M, Rapela C, Renno AD, Richards S, Roberts M, Rottura A, Saavedra J, Sial AN, Toselli AJ, Ugidos JM, Uher P, Villaseca C, Visona D, Whitney DL, Williamson B, Woodard HH (2005) Occurrence and origin of andalusite in peraluminous felsic igneous rocks. J Petrol 46:441–472CrossRefGoogle Scholar
  13. Collins WJ (2002) Hot orogens, tectonic switching, and creation of continental crust. Geology 30:535–538CrossRefGoogle Scholar
  14. Collins WJ, Beams SD, White AJR, Chappell BW (1982) Nature and origin of A-type granites with particular reference to southeastern Australia Contrib Mineral Petrol 80:189–200Google Scholar
  15. Creaser RA, Price RC, Wormald RJ (1991) A-type granites revisited: assessment of a residual-source model. Geology 19:163–166CrossRefGoogle Scholar
  16. Dahlquist JA, Rapela CW, Baldo E (2005a) Petrogenesis of cordierite-bearing S-type granitoids in Sierra de Chepes, Famatinian orogen, Argentina. J S Am Earth Sci 20:231–251CrossRefGoogle Scholar
  17. Dahlquist JA, Rapela CW, Pankhurst RJ, Baldo E, Saavedra J, Alasino PH (2005b) Los granitoides de la sierra de Chepes y su comparación con granitoides paleozoicos de las Sierras Pampeanas: implicancias para el orógeno famatiniano. Geología de la provincia de La Rioja — Precámbrico–Paleozoico Inferior: In: Dahlquist, J.A., Baldo, E.G., Alasino, P.H. (Eds.), Asociación Geológica Argentina, Serie D, Publicación Especial, 8: pp. 87–108 (In Spanish)Google Scholar
  18. Dahlquist JA, Pankhurst RJ, Rapela CW, Casquet C, Fanning CM, Alasino P, Baez FM (2006) The San Blas Pluton: an example of Carboniferous plutonism in the Sierras Pampeanas, Argentina. J S Am Earth Sci 20:341–350CrossRefGoogle Scholar
  19. Dahlquist JA, Galindo C, Pankhurst RJ, Rapela CW, Alasino PH, Saavedra J, Fanning CM (2007) Magmatic evolution of the Penón Rosado granite: petrogenesis of garnet-bearing granitoids. Lithos 95:177–207CrossRefGoogle Scholar
  20. Dahlquist JA, Pankhurst RJ, Rapela CW, Galindo C, Alasino P, Fanning CM, Saavedra J, Baldo E (2008) New SHRIMP U–Pb data from the Famatina complex: constraining Early–Mid Ordovician Famatinian magmatism in the Sierras Pampeanas, Argentina. Geol Acta 6:319–333Google Scholar
  21. Dahlquist JA, Alasino PH, Eby GN, Galindo C, Casquet C (2010) Fault controlled Carboniferous A-type magmatism in the proto-Andean foreland (Sierras Pampeanas, Argentina): geochemical constraints and petrogenesis. Lithos 115:65–81CrossRefGoogle Scholar
  22. Dahlquist JA, Rapela CW, Pankhurst RJ, Fanning CM, Vervoort JD, Hart G, Baldo EG, Murra JA, Alasino PH, Colombo F (2012) Age and magmatic evolution of the Famatinian granitic rocks of sierra de Ancasti, Sierras Pampeanas, NW Argentina. J S Am Earth Sci 34:10–25CrossRefGoogle Scholar
  23. Dahlquist JA, Pankhurst RJ, Gaschnig RM, Rapela CW, Casquet C, Alasino PH, Galindo C, Baldo EG (2013) Hf and Nd isotopes in Early Ordovician to Early Carboniferous granites as monitors of crustal growth in the Proto-Andean margin of Gondwana. Gondwana Res 23:1617–1630CrossRefGoogle Scholar
  24. De Paolo DJ, Linn AM, Schubert G (1991) The continental crustal age distribution: methods of determining mantle separation ages from Sm–Nd isotopic data and application to the Southwestern United States. J Geophys Res 96:2071–2088CrossRefGoogle Scholar
  25. Dickinson WR, Gehrels GE (2003) U-Pb ages of detrital zircons from Permian and Jurassic eolian sandstones of the Colorado Plateau, USA: paleogeographic implications. Sediment Geol 163:29–66CrossRefGoogle Scholar
  26. Dorais MJ, Lira R, Chen Y, Tingey D (1997) Origin of biotite–apatite-rich enclaves, Achala batholith, Argentina. Contrib Mineral Petrol 130:31–46CrossRefGoogle Scholar
  27. Ducea MN, Otamendi JE, Bergantz G, Stair KM, Valencia VA, Gehrels GE (2010) Timing constraints on building an intermediate plutonic arc crustal section: U- Pb zircon geochronology of the Sierra Valle Fértil–La Huerta, Famatinian arc, Argentina. Tectonics 29: doi:  10.1029/2009TC002615
  28. Eby GN (1990) The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 26:115–134CrossRefGoogle Scholar
  29. Eby GN (1992) Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology 20:641–644CrossRefGoogle Scholar
  30. Ewart A, Griffin WL (1994) Application of proton-microprobe data to trace-element partitioning in volcanic-rocks. Chem Geol 117:251–284Google Scholar
  31. Franchini M, Lira R, Meinert L, Ríos FJ, Poklepovic MF, Impiccini A, Millone H (2005) Na-Fe-Ca Alteration and LREE (Th-Nb) Mineralization in marble and granitoids of Sierra de Sumampa, Santiago del Estero, Argentina. Econ Geol 100:733–764Google Scholar
  32. Frost CD, Frost BR (1997) Reduced rapakivi-type granites: the tholeiite connection. Geology 25:647–650Google Scholar
  33. Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 42:2033–2048CrossRefGoogle Scholar
  34. Galindo C, Pankhurst RJ, Casquet C, Coniglio JE, Baldo E, Rapela C, Saavedra J (1997) Age, Sr and Nd isotope systematics, and origin of two fluorite lodes, Sierras Pampeanas, Argentina. Int Geol Rev 39:948–954CrossRefGoogle Scholar
  35. Galliski MA (1994) La Provincia Pegmatítica Pampeana. II: Metalogénesis de sus distritos económicos. Rev Asoc Geol Argent 49:113–122Google Scholar
  36. Gaschnig RM, Vervoort JD, Lewis RS, McClelland WC (2010) Migrating magmatism in the northern US Cordillera: in-situ U-Pb geochronology of the Idaho batholith. Contrib Mineral Petrol 159:863–883CrossRefGoogle Scholar
  37. Grosse P, Söllner F, Baéz MA, Toselli AJ, Rossi JN, de la Rosa JD (2009) Lower Carboniferous post-orogenic granites in central-eastern Sierra de Velasco, Sierras Pampeanas, Argentina: U–Pb monazite geochronology and Sr–Nd isotopes. Int J Earth Sci 98:1001–1025CrossRefGoogle Scholar
  38. Höckenreiner M, Söllner F, Miller H (2003) Dating the TIPA shear zone: an early Devonian terrane boundary between the Famatinian and Pampean systems (NW Argentina). J S Am Earth Sci 16:45–66CrossRefGoogle Scholar
  39. Huang HQ, Li XH, Li WX, Li ZX (2011) Formation of high δ18O fayalite-bearing A-type granite by high-temperature melting of granulitic metasedimentary rocks, southern China. Geology 39:903–906CrossRefGoogle Scholar
  40. Icenhower JP, London D (1996) Experimental partitioning of Rb, Cs, Sr, and Ba between alkali feldspar and peraluminous melt. Am Mineral 81:719–734Google Scholar
  41. Jarosewich EJ, Nelen JA, Norberg JA (1980) Reference samples for electron microprobe analysis. Geostand Newslett 4:43–47CrossRefGoogle Scholar
  42. Johnson DM, Hooper PR, Conrey RM (1999) XRF analysis of rocks and minerals for major and trace elements on a single low dilution Li-tetraborate fused bead. Adv X-ray Anal 41:843–867Google Scholar
  43. King PL, White AJR, Chappel BW, Allen CM (1997) Characterization and origin of aluminous A-type granites from the Lanchan Fold Belt, Southern Australia. J Petrol 38:371–391CrossRefGoogle Scholar
  44. Komar PD (1972) Flow differentiation in igneous dikes and sills: profiles of velocity and phenocryst concentration. Geol Soc Am Bull 83:3443–3448CrossRefGoogle Scholar
  45. Konopelko D, Biske G, Seltmann R, Eklund O, Belyatsky B (2007) Hercynian postcollisional A-type granites of the Kokshaal Range, Southern Tien Shan, Kyrgyzstan. Lithos 97:140–160CrossRefGoogle Scholar
  46. Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:277–279Google Scholar
  47. Lira R (1985) Un nuevo modelo metalogenético uranífero en el basamento cristalino de las Sierras Pampeanas: uranio en metamorfitas de contacto (Batolito de Achala – Pcia. De Córdoba). Bol Asoc Geol Córdoba 7:438–451Google Scholar
  48. Lira R, Kirschbaum AM (1990) Geochemical evolution of granites from the Achala batholith of the Sierras Pampeanas, Argentina, in: Kay SM, Rapela CW (Eds.), Plutonism from Antarctica to Alaska. Geological Society of America Special Paper 241: pp. 67–76Google Scholar
  49. López de Luchi MG, Siegesmund S, Wemmer K, Steenken A, Naumann R (2007) Geochemical constraints on the petrogenesis of the Palaeozoic granitoids of the Sierra de San Luis, Sierras Pampeanas, Argentina. J S Am Earth Sci 24(2–4):138–166Google Scholar
  50. Ludwig KR (2003) Isoplot 3.0. A Geochronological Toolkit for Microsoft Excel. Special Publication, 4. Berkeley Geochronological Center, Berkeley, CA 94709, USAGoogle Scholar
  51. Martino R (2003) Las fajas de deformación dúctil de las Sierras Pampeanas de Córdoba: Una reseña general. Rev Asoc Geol Argent 58:549–571Google Scholar
  52. Martino R, Kraemer P, Escayola M, Giambastiani M, Arnosio M (1995) Transecta de las Sierras Pampeanas de Córdoba a los 32° S. Rev Asoc Geol Argent 50(1–4):60–77Google Scholar
  53. McGuire AV, Francis CA, Dyar MD (1992) Mineral standards for electron microprobe analysis of oxygen. Am Mineral 77:1087–1091Google Scholar
  54. Miller CF, Stoddard EF, Bradfish LJ, Dollase WA (1981) Composition of plutonic muscovite. Genetic implications. Can Mineral 19:25–34Google Scholar
  55. Miller CF, McDowell SM, Mapes RW (2003) Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 31:529–532CrossRefGoogle Scholar
  56. Nakamura N (1974) Determination of REE, Ba, Mg, Na and K in carbonaceous and ordinary chondrites. Geochim Cosmochim Acta 38:757–773CrossRefGoogle Scholar
  57. Nash WP, Crecraft HR (1985) Partition coefficients for trace elements in silicic magmas. Geochim Cosmochim Acta 49:2309–2322Google Scholar
  58. Nelson DR (1992) Isotopic characteristic of potassic rocks. Evidence for the involvement of subducted sediment in magma genesis. Lithos 28:403–420Google Scholar
  59. Pankhurst RJ, Rapela CW (1998) The proto-Andean margin of Gondwana: An introduction, in: Pankhurst RJ, Rapela CW (Eds.), The Proto-Andean Margin of Gondwana. Geological Society of London, Special Publications 142:1–9Google Scholar
  60. Pankhurst RJ, Rapela CW, Saavedra J, Baldo EG, Dahlquist JA, Pascua I, Fanning, CM (1998) The Famatinian arc in the central Sierras Pampeanas: an Early to Mid-Ordovician continental arc on the Gondwana margin. In: Pankhurst RJ, Rapela CW (Eds.), The Proto-Andean Margin of Gondwana: Geological Society of London, Special Publication, 142:343–367Google Scholar
  61. Pankhurst RJ, Rapela CW, Fanning CM (2000) Age and origin of coeval TTG, I–S-type granites in the Famatinian belt of NW Argentina. Trans R Soc Edinb Earth Sci 91:151–168CrossRefGoogle Scholar
  62. Paterson SR (2009) Magmatic tubes, troughs, pipes, and diapers: late-stage convective instabilities resulting in compositional diversity and permeable networks in crystal-rich magmas of the Tuolumne Batholith, Sierra Nevada, California. Geosphere 5:496–527CrossRefGoogle Scholar
  63. Patiño Douce MLG, Patiño Douce AE (1987) Petrología y petrogénesis del batolito de Achala, provincia de Córdoba, a la luz de la evidencia de campo. Rev Asoc Geol Argent 42:201–205Google Scholar
  64. Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983CrossRefGoogle Scholar
  65. Philpotts JA, Schnetzler CC (1970) Phenocryst-matrix partition coefficients for K, Rb, Sr and Ba, with applications to anorthosite and basalt genesis. Geochim Cosmochim Acta 34:307–322Google Scholar
  66. Philpotts A, Ague J (2009) Principles of igneous and metamorphic petrology. Cambridge University Press. pp. 684Google Scholar
  67. Pinotti L, Coniglio J, Esparza A, D’Eramo F, Llambías E (2002) Nearly circular plutons emplaced by stoping at shallow crustal levels, Cerro Áspero batholith, Sierras Pampeanas de Córdoba, Argentina. J S Am Earth Sci 15:251–265CrossRefGoogle Scholar
  68. Pinotti L, Tubía JM, D’Eramo F, Vegas N, Sato AM, Coniglio J, Aranguren A (2006) Structural interplay between plutons during the construction of a batholith (Cerro Aspero batholith, Sierras de Córdoba, Argentina). J Struct Geol 28:834–849CrossRefGoogle Scholar
  69. Rapela CW (1982) Aspectos geoquímicos y petrológicos del batolito de Achala, provincia de Córdoba. Rev Asoc Geol Argent 37:313–332Google Scholar
  70. Rapela CW, Pankhurst RJ, Bonalumi AA (1991) Edad y geoquímica del pórfido granítico de Oncán, Sierra Norte de Córdoba, Sierras Pampeanas, Argentina. 6 Congreso Geológico Chileno, Resúmenes Expandidos: 19–22Google Scholar
  71. Rapela CW, Pankhurst RJ, Casquet C, Baldo E, Saavedra J, Galindo C, Fanning M (1998) The Pampean orogeny of the southern proto-Andes: Cambrian continental collision in the Sierras de Córdoba, in: Pankhurst RJ, Rapela, CW (Eds.), The Proto-Andean Margin of Gondwana. Geological Society of London, Special Publications 142: 181–217Google Scholar
  72. Rapela CW, Pankhurst RJ, Casquet C, Fanning CM, Baldo EG, González-Casado JM, Galindo C, Dahlquist J (2007) The Río de la Plata craton and the assembly of SW Gondwana. Earth Sci Rev 83:49–82CrossRefGoogle Scholar
  73. Rapela CW, Baldo EG, Pankhurst RJ, Fanning CM (2008a) The Devonian Achala batholith in the Sierras Pampeanas: F-rich aluminous A-type granites. VI South American Symposium on Isotope Geology, San Carlos de Bariloche, Argentina, Proceedings in CD-ROM, Paper 53Google Scholar
  74. Rapela CW, Pankhurst RJ, Dahlquist JA, Baldo EG, Casquet C, Galindo C (2008b) Revisiting accretionary history and magma sources in the Southern Andes: Time variation of “typical Andean granites”. 7 International Symposium on Andean Geodynamics, Nice, France, Extended Abstracts: 427–430Google Scholar
  75. Rasband WS (2011) ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA,, 1997–2011
  76. Ross ME (1986) Flow differentiation, phenocryst alignment, and compositional trends within a dolerite dike at Rockport, Massachusetts. Geol Soc Am Bull 97:232–240CrossRefGoogle Scholar
  77. Saavedra J, Baldo EG, Pankhurst, RJ, Rapela CW, Murra J (1998) El granito de Capilla del Monte (Sierras Pampeanas de Córdoba, Argentina): edad, geoquímica, génesis y especialización metalogenética. 10 Congreso Latinoamericano de Geología y 6 Congreso Nacional de Geología Económica 2: 372Google Scholar
  78. Scheepers R (2000) Granites of the Saldania mobile belt, South Africa: radioelements and P as discriminators applied to metallogeny. J Geochem Explor 68:69–86CrossRefGoogle Scholar
  79. Schwartz JJ, Gromet LP, Miró R (2008) Timing and duration of the calc-alkaline arc of the Pampean Orogeny: implications for the Late Neoproterozoic to Cambrian evolution of western Gondwana. J Geol 116:39–61CrossRefGoogle Scholar
  80. Shand SJ (1927) The eruptive rocks. John Wiley, New York, 360 ppGoogle Scholar
  81. Siegesmund S, Steenken A, López de Luchi MG, Wemmer K, Hoffmann A, Mosch S (2004) The Las Chacras–Potrerillos batholith (Pampean Ranges, Argentina): structural evidence, emplacement and timing of the intrusion. Int J Earth Sci 93:23–43CrossRefGoogle Scholar
  82. Simpson C, Law R, Gromet L, Miró R, Northrup C (2003) Paleozoic deformation in the Sierras de Córdoba and Sierra de Las Minas, eastern Sierras Pampeanas, Argentina. J S Am Earth Sci 15:749–764CrossRefGoogle Scholar
  83. Sims JP, Ireland TR, Camacho A, Lyons P, Pieters PE, Skirrow RG, Stuart-Smith PG, Miró R (1998) U-Pb, Th-Pb and Ar-Ar geochronology from the southern Sierras Pampeanas, Argentina: implications for the Palaeozoic tectonics evolution of the western Gondwana margin, in: Pankhurst RJ, Rapela CW (Eds.), The Proto-Andean Margin of Gondwana. Geological Society of London, Special Publications 142: 259–281Google Scholar
  84. Speer JA (1984) Micas in igneous rocks, in: Bailey SW (Ed.), Micas, Reviews in Mineralogy 13: 299–356Google Scholar
  85. Steiger RH, Jäger E (1977) Subcommission of geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362CrossRefGoogle Scholar
  86. Streckeisen A (1976) To each plutonic rock its proper name. Earth Sci Rev 12:1–33CrossRefGoogle Scholar
  87. Stuart-Smith PG, Miró R, Sims JP, Pieters PE, Lyons P, Camacho A, Skirrow RG, Black LP (1999) Uranium-lead dating of felsic magmatic cycles in the southern Sierras Pampeanas, Argentina: implications for the tectonic development of the proto-Andean Gondwana margin, in: Ramos VA, Keppie JD (Eds.), Laurentia Gondwana connections before Pangea. Geological Society of America Special Publication 336: 87–114Google Scholar
  88. Sun SS, McDonough, WF (1989) Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. Magmatism in the ocean basins: In: Saunders AD, Norry MJ (Eds.), Geological Society of London 42: 313–345Google Scholar
  89. Taylor SR and McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific Publications. Great Britain. pp 312Google Scholar
  90. Twist D, Harmer REJ (1987) Geochemistry of contrasting siliceous magmatic suites in the Bushveld complex: genetic aspects and implications for tectonic discrimination diagrams. J Volcanol Geotherm Res 32:83–98CrossRefGoogle Scholar
  91. Wager LR (1963) The mechanism of adcumulus growth in the alyered series of the Skaergaard intrusion: Mineralogical Society of America Special Paper 1: 1–9Google Scholar
  92. Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304CrossRefGoogle Scholar
  93. Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol 95:407–419CrossRefGoogle Scholar
  94. Willner AP, Gerdes A, Massonne HJ, Schmidt A, Sudo M, Thomson SN, Vujovich G (2011) The geodynamics of collision of a microplate (Chilenia) in Devonian times deduced by the pressure–temperature–time evolution within part of a collisional belt (Guarguaraz complex, W-Argentina). Contrib Mineral Petrol 162:303–327CrossRefGoogle Scholar
  95. Wilson M (1989) Igneous petrogenesis: A global tectonic approach. Chapman & Hall, London, 466 ppCrossRefGoogle Scholar
  96. Zarco JJ (2006) Geología estructural y petrología del complejo granítico peraluminoso de Achala en relación con la génesis y localización de mineralizaciones de uranio (Sierras Pampeanas - Argentina). Tesis Doctoral (Ph.D.), Universidad Nacional de Salta, Argentina (unpublished). pp. 147Google Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Juan A. Dahlquist
    • 1
    Email author
  • Pablo H. Alasino
    • 2
    • 3
  • Carina Bello
    • 4
  1. 1.CICTERRA-CONICET-UNCCórdobaArgentina
  2. 2.INGeReN-CENIIT-UNLaRLa RiojaArgentina
  3. 3.CRILAR-CONICETAnillacoArgentina
  4. 4.Regional CentroComisión Nacional de Energía AtómicaCórdobaArgentina

Personalised recommendations