Skip to main content
Log in

Geochemical make-up of oceanic peridotites from NW Turkey and the multi-stage melting history of the Tethyan upper mantle

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We present the whole-rock and the mineral chemical data for upper mantle peridotites from the Harmancık region in NW Turkey and discuss their petrogenetic–tectonic origin. These peridotites are part of a Tethyan ophiolite belt occurring along the İzmir-Ankara-Ercincan suture zone in northern Turkey, and include depleted lherzolites and refractory harzburgites. The Al2O3 contents in orthopyroxene and clinopyroxene from the depleted lherzolite are high, and the Cr-number in the coexisting spinel is low falling within the abyssal field. However, the orthopyroxene and clinopyroxene in the harzburgites have lower Al2O3 contents for a given Cr-number of spinel, and plot within the lower end of the abyssal field. The whole-rock geochemical and the mineral chemistry data imply that the Harmancık peridotites formed by different degrees of partial melting (~%10–27) of the mantle. The depleted lherzolite samples have higher MREE and HREE abundances than the harzburgitic peridotites, showing convex-downward patterns. These peridotites represent up to ~16 % melting residue that formed during the initial seafloor spreading stage of the Northern Neotethys. On the other hand, the more refractory harzburgites represent residues after ~4–11 % hydrous partial melting of the previously depleted MOR mantle, which was metasomatized by slab-derived fluids during the early stages of subduction. The Harmancık peridotites, hence, represent the fragments of upper mantle rocks that formed during different stages of the tectonic evolution of the Tethyan oceanic lithosphere in Northern Neotethys. We infer that the multi-stage melting history of the Harmancık peridotites reflect the geochemically heterogeneous character of the Tethyan oceanic lithosphere currently exposed along the İzmir-Ankara-Erzincan suture zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adam J, Green T (2006) Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behavior. Contrib Mineral Petrol 152:1–17

    Article  Google Scholar 

  • Aldanmaz E, Schmidt MW, Gourgaud A, Meisel T (2009) Mid-ocean ridge and supra-subduction geochemical signatures in spinel-peridotites from the Neotethyan ophiolites in SW Turkey: Implications for upper mantle melting processes. Lithos 113:691–708

    Article  Google Scholar 

  • Altunkaynak Ş, Dilek Y (2006) Timing and nature of postcollisional volcanism in western Anatolia and geodynamic implications, in Dilek Y, Pavlides S eds. Postcollisional tectonics and magmatism in the Mediterranean region and Asia. Geol Soc of America Spec Pap 409:321–351

    Google Scholar 

  • Arai S (1992) Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry. Mineral Mag 56:173–184

    Article  Google Scholar 

  • Arai S (1994) Characterisation of spinel peridotites by olivine–spinel compositional relationships: review and interpretation. Chem Geol 113:191–204

    Article  Google Scholar 

  • Batanova VG, Sobolev AV (2000) Compositional heterogeneity in subduction-related mantle peridotites, Troodos massif, Cyprus. Geol 28:55–58

    Article  Google Scholar 

  • Bedard JH (1999) Petrogenesis of Boninites from the Betts Cove Ophiolite, Newfoundland, Canada: Identification of Subducted Source Components. J Petrol 40:1853–1889

    Article  Google Scholar 

  • Bonatti E, Michael PJ (1989) Mantle peridotites from continental rifts to ocean basins to subduction zones. Earth Planet Sci Lett 91:297–311

    Article  Google Scholar 

  • Burnham OM, Schweyer J (2004) Trace element analysis of geological samples by ICP-MS at the Geoscience Laboratories: revised capabilities due to improvements to instrumentation. In: Summary of Field Work and Other Activities 2004. Ontario Geological Survey Open File Report 6145, pp. 54-1–54-20.

  • Choi SH, Shervais JW, Mukasa SB (2008) Supra-subduction and abyssal mantle peridotites of the Coast Range ophiolite, California. Contrib Mineral Petrol 156:551–576

    Article  Google Scholar 

  • Dick HJB (1989) Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism. In: Saunders, A. D. and Norry, M. J. (eds) Magmatism in the Ocean Basins. Geol Soc Spec Publ 42:71–105

    Article  Google Scholar 

  • Dick HJB, Bullen T (1984) Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib Mineral Petrol 86:54–76

    Article  Google Scholar 

  • Dilek Y, Altunkaynak Ş (2007) Cenozoic crustal evolution and mantle dynamics of post-collisional magmatism in western Anatolia. Int Geol Rev 49:431–453

    Article  Google Scholar 

  • Dilek Y, Flower MFJ (2003) Arc-trench rollback and forearc accretion: 2. A Model Template for Ophiolites in Albania, Cyprus, and Oman, in Dilek Y, Robinson PT eds. Ophiolites in Earth history. Geol Soc Lond Spec Publ 218:43–68

    Article  Google Scholar 

  • Dilek Y, Furnes H (2009) Structure and geochemistry of Tethyan ophiolites and their petrogenesis in subduction rollback systems. Lithos 113:1–20

    Article  Google Scholar 

  • Dilek Y, Furnes H (2011) Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geol Soc Am Bull 123:387–411

    Article  Google Scholar 

  • Dilek Y, Moores EM (1990) Regional tectonics of the eastern Mediterranean ophiolites. In: Malpas J, Moores E, Panayiotou A, Xenophontos C (eds) Ophiolites-Oceanic Crustal Analogues. Proceedings of Troodos Ophiolite Symposium. Geological Survey, Cyprus, pp 295–309

    Google Scholar 

  • Dilek Y, Morishita T (2009) Melt migration and upper mantle evolution during incipient arc construction: Jurassic Eastern Mirdita ophiolite, Albania. Island Arc 18:551–554

    Article  Google Scholar 

  • Dilek Y, Thy P (2006) Age and petrogenesis of plagiogranite intrusions in the Ankara melange, Central Turkey. Island Arc 15:44–57

    Article  Google Scholar 

  • Dilek Y, Thy P (2009) Island arc tholeiite to boninitic melt evolution of the Cretaceous Kizildag (Turkey) ophiolite: Model for multi-stage early arc-forearc magmatism in Tethyan subduction factories. Lithos 113:68–87

    Article  Google Scholar 

  • Dilek Y, Whitney DL (1997) Counterclockwise PTt trajectory from the metamorphic sole of a Neo-Tethyan ophiolite (Turkey). Tectonophysics 280:295–301

    Article  Google Scholar 

  • Dilek Y, Thy P, Hacker B, Grundvig S (1999) Structure and petrology of Tauride ophiolites and mafic dike intrusions (Turkey): Implications for the Neo-Tethyan ocean. Bull Geol Soc Am 111:1192–1216

    Article  Google Scholar 

  • Dilek Y, Furnes H, Shallo M (2007) Suprasubduction zone ophiolite formation along the periphery of Mesozoic Gondwana. Gondwana Res 11:453–475

    Article  Google Scholar 

  • Droop GTR, Karakaya MÇ, Eren Y, Karakaya N (2005) Metamorphic evolution of blueschists of the Altınekin Complex, Konya area, south central Turkey. Geol J 40:127–153

    Article  Google Scholar 

  • Edwards SJ, Pearce JA, Freeman J (2000). New insights concerning the influence of water during the formation of podiform chromitite: In, Dilek, Y., Moores, E.M., Nicolas, A. and Elthon, D. (Eds.), Ophiolites and Oceanic Crust: New Insights from Field Studies and the Ocean Drilling Program, Geological Society of America Special Paper 349, p. 139–147.

  • Eiler JM, Crawford A, Elliott T, Farley KA, Valley JW, Stolper EM (2000) Oxygen isotope geochemistry of oceanic-arc lavas. J Petrol 41:229–256

    Article  Google Scholar 

  • Eiler JM, Schiano P, Valley JW, Kita NT, Stolper EM (2007) Oxygen-isotope and trace element constraints on the origins of silica-rich melts in the subarc mantle. Geochem Geophys Geosyst 8:Q09012

    Article  Google Scholar 

  • Flower MFJ, Dilek Y (2003). Arc-trench rollback and forearc accretion: 1. A collision-induced mantle flow model for Tethyan ophiolites in Dilek Y, Robinson PT eds. Ophiolites in Earth history: Geological Society (London) Special Publication 218:21– 41.

  • Gaetani GA, Grove TL (1998) The influence of water on melting of mantle peridotite. Contrib Mineral Petrol 131:323–346

    Article  Google Scholar 

  • Green T, Blundy JD, Adam J, Yaxley GM (2000) SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2-7.5 Gpa and 1080-1200C. Lithos 53:165–187

    Article  Google Scholar 

  • Hellebrand E, Snow JE, Dick HJB, Hofmann AW (2001) Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature 410:677–681

    Article  Google Scholar 

  • Hellebrand E, Snow JE, Hoppe P, Hofmann AW (2002) Garnet-field melting and late-stage refertilization in residual abyssal peridotites from the Central Indian Ridge. J Petrol 43:2305–2398

    Article  Google Scholar 

  • Ishii T, Robinson PT, Maekawa H, Fiske R (1992). Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu-Ogasawara-Mariana forearc, LEG125. In Proc. Ocean Drilling Project, Scientific Results (P. Fryer, J.A. Pearce and L.B. Stokking, eds.) 125:445–486.

  • Johnson KTM, Dick HJB (1992) Open system melting and temporal and spatial variation of peridotite and basalt at the Atlantis II Fracture Zone. J Geophys Res 97:9219–9241

    Article  Google Scholar 

  • Johnson KTM, Dick HJB, Shimizu N (1990) Melting in the oceanic upper mantle: An ion microprobe study of diopsides in abyssal peridotites. J Geophys Res 93:2661–2678

    Article  Google Scholar 

  • Kelemen PB, Hirth G, Shimizu N, Spiegelman M, Dick HJB (1997) A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges. Philos Trans R Soc Lond 355:283–318

    Article  Google Scholar 

  • Kinzler RJ (1997) Melting of mantle peridotite at pressures approaching the spinel to garnet transition: Application to mid-ocean ridge basalt petrogenesis. J Geophys Res 102:853–874

    Article  Google Scholar 

  • Kornprobst J, Ohnenstetter D, Ohnenstetter M (1981) Na and Cr contents in cpx from peridotites: a possible discriminant between ‘sub-continental’ and ‘sub-oceanic’ mantle. Earth Planet Sci Lett 53:241–254

    Article  Google Scholar 

  • Manav H, Gültekin AH, Uz B (2004) Geochemical evidence for the tectonic setting of the Harmancık ophiolites, NW Turkey. J Asian Earth Sci 24:1–9

    Article  Google Scholar 

  • McKenzie D, O’Nions RK (1991) Partial melt distributions from inversion of rare Earth element concentrations. J Petrol 32:1021–1091

    Article  Google Scholar 

  • Morishita T, Tani K, Shukuno H, Harigane Y, Tamura A, Kumagai H, Hellebrand E (2011a) Diversity of melt conduits in the Izu-Bonin-Mariana forearc mantle: Implications for the earliest stage of arc magmatism. Geol 39:411–414

    Article  Google Scholar 

  • Morishita T, Dilek Y, Shallo M, Tamura A, Arai S (2011b) Insight into the uppermost mantle section of a maturing arc: The Eastern Mirdita ophiolite, Albania. Lithos 124:215–226

    Article  Google Scholar 

  • Niu Y (2004) Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. J Petrol 45:2423–2458

    Article  Google Scholar 

  • Niu Y, Langmuır CH, Kinzler RJ (1997) The origin of abyssal peridotites: a new perspective. Earth Planet Sci Lett 152:251–265

    Article  Google Scholar 

  • Ohara Y, Stern RJ, Ishii T, Yurimoto H, Yamazaki T (2002) Peridotites from the Mariana Trough: first look at the mantle beneath an active back-arc basin. Contrib Mineral Petrol 143:1–18

    Article  Google Scholar 

  • Okay AI (1980) Mineralogy, petrology and phase relations of glaucophane–lawsonite zone blueschists from the Tavsanlı region, Northwest Turkey. Contrib Mineral Petrol 72:243–255

    Article  Google Scholar 

  • Okay AI (1986). Denizli-Tavas arasındaki bölgenin jeolojisi: TPAO Arama Grubu Rap., 2042.

  • Okay AI, Kelley SP (1994) Tectonic setting, petrology and geochronology of jadeite + glaucophane and chloritoid + glaucophane schists from northwest Turkey. J Metamorph Geol 12:455–466

    Article  Google Scholar 

  • Ozawa K, Shimuzi N (1995) Open-system melting in the upper mantle: Constraints from the Hayachine-Miyamori ophiolite, northeastern Japan. J Geophys Res 100:22315–22335

    Article  Google Scholar 

  • Özkoçak O (1969). Etude geologique du massif ultrabasique D’Orhaneli et de sa Proche bordure (Bursa-Turquie). Unpublished PhD Thesis, University of Paris.

  • Palme H, O'Neill HSC (2004) Cosmochemical estimates of Mantle Composition. In: Holland HD, Turrekian KK (eds) Treatise on Geochem. vol 2. Elsevier, Amsterdam, pp 1–38, Cosmochemical estimates of Mantle Composition

    Google Scholar 

  • Parkinson IJ, Pearce JA (1998) Peridotites from the Izu–Bonin–Mariana forearc (ODP Leg 125): evidence for mantle melting and melt–mantle interaction in a suprasubduction zone setting. J Petrol 39:1577–1618

    Article  Google Scholar 

  • Parkinson IJ, Pearce JA, Thirlwall MF, Johnson KTM, Ingram G (1992) Trace element geochemistry of peridotites from the Izu–Bonin–Mariana forearc, Leg 125. In: Fryer P, Pearce JA, Stokking LB et al (eds) Proceedings of the Ocean Drilling Program Scientific Results, 125. College Station, TX, Ocean Drilling Program, pp 487–506

    Google Scholar 

  • Parkinson IJ, Arculus RJ, Eggins SM (2003) Peridotite xenoliths from Grenada, Lesser Antilles Island Arcs. Contrib Mineral Petrol 146:241–262

    Article  Google Scholar 

  • Parlak O, Höck V, Delaloye M (2002) The supra-subduction zone Pozanti-Karsanti ophiolite, Southern Turkey: evidence for high-pressure crystal fractionation of ultramafic cumulates. Lithos 65:205–224

    Article  Google Scholar 

  • Pearce JA, Robinson PT (2010) The Troodos ophiolitic complex probably formed in a subduction initiation, slab edge setting. Gondwana Res 18:60–81

    Article  Google Scholar 

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983

    Article  Google Scholar 

  • Pearce JA, van der Laan SR, Arculus RJ, Murton BJ, Ishii T, Peate DW, Parkinson IJ (1992) Boninite and Harzburgite from Leg 125 (Bonin-Mariana Forearc): A Case Study of Magma Genesis during the Initial Stages of Subduction. Proc Ocean Drill Program Sci Results 125:623–659

    Google Scholar 

  • Pearce JA, Barker PF, Edwards SJ, Parkinson IJ, Leat PT (2000) Geochemical and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic. Contrib Mineral Petrol 139:36–53

    Article  Google Scholar 

  • Piccardo GB, Zanetti A, Müntener O (2007) Melt/peridotite interaction in the Southern Lanzo peridotite: Field, textural and geochemical evidence. Lithos 94:181–209

    Google Scholar 

  • Rampone E, Piccardo GB, Hofmann AW (2008) Multi-stage melt-rock interaction in the Mt. Maggiore (Corsica, France) ophiolitic peridotites: microstructural and geochemical evidence. Contrib Mineral Petrol 156:453–475

    Google Scholar 

  • Robertson AHF (1994) Role of the tectonic facies concept in orogenic analysis and its application to Tethys in the Eastern Mediterranean region. Earth Sci Rev 37:139–213

    Article  Google Scholar 

  • Rolland Y, Billo S, Corsini M, Sosson M, Galoyan G (2009) Blueschists of the Amassia-Stepanavan Suture Zone (Armenia): linking Tethys subduction history from E-Turkey to W-Iran. Int J Earth Sci (Geol Rundsch) 98:533–550

    Article  Google Scholar 

  • Seyler M, Lorand JP, Dick HJB, Drouin M (2007) Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge, 15–20 N: ODP Hole 1274A. Contrib Mineral Petrol 153:303–319

    Article  Google Scholar 

  • Sherlock S, Kelley S, Inger S, Harris N, Okay AI (1999) 40Ar–39Ar and Rb–Sr geochronology of high-pressure metamorphism and exhumation history of the Tavşanlı Zone, NW Turkey. Contrib Mineral Petrol 137:46–58

    Google Scholar 

  • Suhr G (1999) Melt migration under oceanic ridges: Inferences from reactive transport modelling of upper mantle hosted dunites. J Petrol 40:575–599

    Article  Google Scholar 

  • Tankut A, Dilek Y, Önen P (1998) Petrology and geochemistry of the Neo-Tethyan volcanism as revealed in the Ankara Melange, Turkey. J Volcanol Geotherm Res 85:265–284

    Article  Google Scholar 

  • Topuz G, Okay AI, Altherr R, Meyer HP, Nasdala L (2006) Partial high-pressure aragonitization of micritic limestones in an accretionary complex, Tavşanlı Zone, NW Turkey. J Metamorph Geol 24:603–613

    Article  Google Scholar 

  • Uysal I, Kaliwoda M, Karsli O, Tarkian M, Sadiklar MB, Ottley CJ (2007) Compositional variations as a result of partial melting and melt-peridotite interaction in an upper mantle section from the Ortaca area, southwestern Turkey. Can Mineral 45:1471–1493

    Article  Google Scholar 

  • Uysal I, Ersoy EY, Karsli O, Dilek Y, Sadiklar MB, Ottley CJ, Tiepolo M, Meisel T (2012) Coexistence of abyssal and ultra-depleted SSZ type mantle peridotites in a Neo-Tethyan Ophiolite in SW Turkey: Constraints from mineral composition, whole-rock geochemistry (major–trace–REE–PGE), and Re–Os isotope systematics. Lithos 132–133:50–69

    Article  Google Scholar 

  • Zhou MF, Robinson P (1997) Origin and tectonic environment of podiform chromite deposits. Econ Geol 92:259–262

    Article  Google Scholar 

  • Zou HB (1998) Trace element fractionation during modal and nonmodal dynamic melting and open-system melting: A mathematical treatment. Geochim Cosmochim Acta 62:1937–1945

    Article  Google Scholar 

Download references

Acknowledgements

Financial support of this study was provided by the project (#2008.112.005.17) of the Scientific Research Foundation of the Karadeniz Technical University (Turkey). The first author is thankful to YÖK (The Council of Higher Education of Turkey) for a post-doctoral scholarship allowing him to spend three months in Montanuniversitaet Leoben, Austria. Y Dilek acknowledges his Miami University Distinguished Professor funds in support of his global ophiolite studies. Raif Kandemir kindly helped with the preparation of some figures. We extend our special thanks to Tomoaki Morishita for his thorough review of an earlier version of this manuscript that helped us focus our thinking. Constructive reviews of an anonymous referee, Associate Editor Marco Fiorentini and Editor in Chief Johan G. Raith were insightful and are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İbrahim Uysal.

Additional information

Editorial handling: M. Fiorentini

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uysal, İ., Şen, A.D., Ersoy, E.Y. et al. Geochemical make-up of oceanic peridotites from NW Turkey and the multi-stage melting history of the Tethyan upper mantle. Miner Petrol 108, 49–69 (2014). https://doi.org/10.1007/s00710-013-0277-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-013-0277-3

Keywords

Navigation