Advertisement

Mineralogy and Petrology

, Volume 107, Issue 6, pp 943–962 | Cite as

Mineralogy and distribution of Platinum-Group Minerals (PGM) and other solid inclusions in the Faryab ophiolitic chromitites, Southern Iran

  • Mohammad Ali Rajabzadeh
  • Zohreh Moosavinasab
Original Paper

Abstract

High-Cr podiform chromitites hosted by upper mantle depleted harzburgite were investigated for PGM and other solid inclusions from Faryab ophiolitic complex, southern Iran. Chemical composition of the chromian spinels, Cr#[100*Cr/(Cr+Al) = 77–85], Mg# [100*Mg/(Mg+Fe2+) = 56–73], TiO2≤0.25wt%, and the presence of abundant primary hydrosilicates included in the chromian spinels indicate that the deposits were formed from aqueous melt generated by high degree of partial melting in a suprasubduction zone setting. Solid phases hosted by chromian spinel grains from the Faryab ophiolitic chromitites can be divided into three categories: PGM, base-metal minerals and silicates. Most of the studied PGM occurred as very small (generally less than 20 μm in size) primary single or composite inclusions of IPGE-bearing phases with or without silicates and base metal minerals. The PGM were divided into the three subgroups: sulfides, alloys and sulfarsenides. Spinel-olivine geothermometry gives the temperatures 1,131–1,177 °C for the formation of the studied chromitites. At those temperatures, fS2 values ranged from 10−3 to 10−1 and provided a suitable condition for Ru-rich laurite formation in equilibrium with Os-Ir alloys. Progressive crystallization of chromian spinel was accompanied by increase of fS2 in the melt. The formation of Os-rich laurite, erlichmanite and then sulfarsenides occurred by increase of fS2 and slight decrease in temperature of the milieu. The compositional and mineralogical determinations of PGM inclusions respect to their spatial distribution in chromian spinels show that the minerals regularly distributed within the chromitites, reflecting cryptic variation consistent with magmatic evolution during host chromian spinel crystallization.

Keywords

Olivine Chromite Platinum Group Element Chromian Spinel Host Mineral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

M. Ohnenstetter and D. Ohnenstetter (CNRS, Nancy, France) are greatly acknowledged for kindly providing helpful comments during this study. The authors wish to thank S. Barda and J. M. Claude (Service Commun, University Nancy I, France) for their help with the electron microprobe analyses and L. Sandrin and R. Lehmann for preparing a large number of high-quality polished and polished-thin sections. The authors are also grateful to J.M. González-Jiménez for his critical review and very helpful criticisms that greatly improved our manuscript. The authors acknowledge the handling of the paper by the associate editor G. Hoinkes and the critical reviews of two anonymous reviewers which helped to improve the manuscript. We appreciate Shiraz University Research Council that supported this work. Mr. Shamimi, the director general and engineer Shoghmand at the Faryab Chromite Mines Company for their assistance in the field work.

References

  1. Ahmed Z, Bevan JC (1981) Awaruite, iridian awaruite, and a new Ru-Os-Ir-Ni-Fe alloy from the Sakhakot-Quila complex, Malakand agency, Pakistan. Mineral Mag 44:225–230CrossRefGoogle Scholar
  2. Augé T (1985) Platinum-group mineral inclusions in ophiolitic chromitite from theVourinos Complex, Greece. Can Mineral 23:163–171Google Scholar
  3. Augé T (1988) Platinum-group minerals in the Tiébaghi and Vourinos ophiolite complexes: genetic implications. Can Mineral 26:177–192Google Scholar
  4. Augé T, Johan Z (1988) Comparative study of chromite deposits from Troodos, Vourinos, North Oman and new Caledonia ophiolites. In: Boissonnas J, Omenetto P (eds) Mineral deposits within the European community. Springer Verlag, Berlin, pp 267–288CrossRefGoogle Scholar
  5. Barkov AY, Martin RF, Halkoaho TAA, Poirier G (2000) The mechanism of charge compensation in Cu-Fe-PGE thiospinels from the Penikat layered intrusion, Finland. Americ Mineral 85:694–697Google Scholar
  6. Barnes S, Naldrett AJ, Gorton MP (1985) The origin of the fractionation of platinum-group elements in terrestrial magmas. Chem Geol 53:303–323CrossRefGoogle Scholar
  7. Cabri LJ, Harris CD (1975) Zoning in Os-Ir alloys and the relation of the geological and tectonic environment of the source rocks to the bulk Pt/(Pt + Ir + Os) ratio for placers. Can Mineral 13:266–274Google Scholar
  8. Capobianco CJ, Herving RL, Drake MJ (1994) Experiments on crystal liquidpartitioning of Ru, rh, and Pd from magnetite and hematite solid-solutions crystallized from silicate melt. Chem Geol 113:23–43CrossRefGoogle Scholar
  9. Carmichael ISE (1967) The iron-titanium oxides of salic volcanic rocks and their associated ferromagnesian silicates. Contrib Mineral Petrol 14:36–64CrossRefGoogle Scholar
  10. Corrivaux L, Laflamme JHG (1990) Mineralogie elements du group du platine dans les chromitites de l’ophiolite de Thetford Mines, Quebec. Can Mineral 28:579–595Google Scholar
  11. Economou-Eliopoulos M (1993) Platinum-group elements (PGE) distribution in chromite ores from ophiolite complexes of Greece: implications for chromite exploration. Ofioliti 18:83–97Google Scholar
  12. Economou-Eliopoulos M (1996) Platinum-group element distribution in chromite ores from ophiolite complexes: implications for their exploration. Ore Geol Rev 11:363–381CrossRefGoogle Scholar
  13. Fabries J (1984) Utilisation des echages Fe-Mg geothermometrie. Application aux roches mafiques et ultramafiques. In: Lagache M (ed) Thermometrie et barometrie geologiques: Societe Francaise de Mineral. Cristallo, Paris, pp 203–233Google Scholar
  14. Feather CE (1976) Mineralogy of platinum-group minerals in the Witwatersrand, South Africa. Econ Geol 71:1399–1428CrossRefGoogle Scholar
  15. Federova ZN, Sinyakova EF (1993) Experimental investigation of physicochemical conditions of pentlandite formation. Russian J Geol Geopgys 34:79–87Google Scholar
  16. Garuti G, Zaccarini F (1997) In situ alteration of platinum-group minerals at lowtemperature: evidence from serpentinized and weathered chromitite of the Vourinos complex, Greece. Can Mineral 35:611–626Google Scholar
  17. Garuti G, Zaccarini F, Economou-Eliopoulos M (1999a) Paragenesis and composition of laurite from chromitites of Othrys (Greece): implications for Os–Rufractionation in ophiolitic upper mantle of the Balkan Peninsula. Mineral Deposita 34:312–319CrossRefGoogle Scholar
  18. Garuti G, Zaccarini F, Moloshag V, Alimov V (1999b) Platinum-group minerals as indicators of sulfur fugacity in ophioliticupper mantle: an example from chromitites of the Ray-Izultramafic complex, Polar Urals, Russia. Can Mineral 37:1099–1115Google Scholar
  19. Gervilla F, Proenza JA, Frei R, González-Jiménez JM, Garrido CJ, Melgarejo JC, Meibom A, Dıaz-Martınez R, Lavaut W (2005) Distribution of platinum-group elements and Os isotopes in chromite ores from Mayarı’-Baracoa Ophiolitic Belt (eastern Cuba). Contrib Mineral Petrol 150:589–607CrossRefGoogle Scholar
  20. Ghazi AM, Hassanipak AA, Mahoney JJ, Duncan RA (2004) Geochemical characteristics, 40Ar-39Ar ages and original tectonic setting of the Band-e-Zeyarat/Dar Anar ophiolite, Makran accretionary prism, S.E. Iran. Tectonophysics 393:175–196CrossRefGoogle Scholar
  21. Glennie KW (2000) Cretaceous tectonic evolution of Arabia’s Eastern plate margin: a tale of two oceans. SEPM (Society for Sedimentary Geology). Special Publication 69:9–20Google Scholar
  22. Glennie KW, Hughes Clarke MW, Boeuf MGA, Pilaar WFH, Reinhardt BM (1990) Inter-relationship of Makran–Oman Mountains Belts of convergence. In: Robertson AHF, Searle MP, Ries AC (eds) The geology and tectonics of the Oman Region. Geological Society of London Special Publication, 49:773–786Google Scholar
  23. González-Jiménez JM, GervillaF PJA, KerestedjianT AT, Bailly L (2009) Zoning of laurite (RuS2) –erlichmanite (OsS2): implications for the origin of PGM in ophiolite chromitites. Eur J Mineral 21:419–432CrossRefGoogle Scholar
  24. González-Jiménez JM, Proenza JA, Gervilla F, Melgarejo JC, Blanco-Moreno JA, Ruiz-Sánchez R, Griffin WL (2011) High-Cr and high-Al chromitites from the Sagua de Tánamo district, Mayarí-Cristal ophiolitic massif (eastern Cuba): constraints ontheir origin from mineralogy and geochemistry of chromian spinel and platinum-group elements. Lithos. doi: 10.1016/j.lithos.2011.01.016
  25. Grieco G, Diella V, Chaplygina NL, Savalieva GN (2006) Platinum group elements zoning and mineralogy of chromitite from the cumulate sequence of the Nurali massif (Southern Urals, Russia). Ore Geol Rev 30:257–276CrossRefGoogle Scholar
  26. Karaj N (1992) Repartition des platinoides, chromites et sulfures dans le massif de Bulqiza, Albanie. Incidence sur les processus metallogeniques dans les ophiolites. These: Universite d’Orleans, p 364Google Scholar
  27. Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino JA, Maresch WV, Nickel EH, Rock NMS, Schumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW, Youshi G (1997) Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on new minerals and mineral names. Ame Mineral 82:1019–1037Google Scholar
  28. Leake BE, Woolley AR, Birch WD, Burke EAJ, Ferraris G, Grice JD, Hawthorne FC, Kisch HJ, VG Kh, Schumacher JC, Stephenson NCN, Whittaker EJW (2004) Nomenclature of amphiboles: additions and revisions to the International Mineralogical Association’s amphibole nomenclature. Eur J Mineral 16:191–196CrossRefGoogle Scholar
  29. Legendre O (1982) Mineralogie et Geochimie des platinoides dans les chromitites ophiolitiques. Comparison avec d’autres types de concentrations en platinoids. These Doc. 3eme Cycle: Universite de Pierre et Marie Curie, Paris VI, p 171Google Scholar
  30. McCall GJH (1985) Explanatory text of the Minab Quadrangle Map;1:250,000; No. J 13, Geological Survey of Iran, Tehran, p 530Google Scholar
  31. McDonough WF, Sun SS (1995) The composition ofthe Earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  32. McElduff B, Stumpfl EF (1989) Geochemistry and mineralogy of platinum-group elements in chromitites from Troodos, Cyprus. Geol Soc Finland Bull 61:36–37Google Scholar
  33. McElduff B, Stumpfl EF (1991) The chromite deposits of the Troodos Complex, Cyprus: evidence for the role of a fluid phase accompanying chromite formation. Mineral Deposita 26:307–318CrossRefGoogle Scholar
  34. Melcher F, Grum W, Simon G, Thalhammer TV, Stumpfl EF (1997) Petrogenesis of the ophiolitic giant chromite deposits of Kempirsai, Kazakhstan: a study of solid and fluid inclusions in chromite. J Petrol 38:1419–1458CrossRefGoogle Scholar
  35. Misra KC, Fleet ME (1973) The chemical composition of synthetic and natural pentlandite assemblages. Econ Geol 77:1348–1366Google Scholar
  36. Moore F, Rajabzadeh MA (1993) First report on platinum-group minerals in chromitites from northwestern Neyriz ophiolite. Iran J Sci IR Iran 4:47–54Google Scholar
  37. Mukherjee R, Mondal SK, Rosing MT, Feri R (2010) Compositional variations in the Mesoarchean chromites of the Nuggihalli schist belt, Western Dharwar Craton (India): potential parental melts and implications for tectonic setting. Contrib Mineral Petrol 160:865–885CrossRefGoogle Scholar
  38. Mungall JE (2002) A model of coprecipitation of Platinum-Group minerals with chromite from silicate melts. 9th International Platinum Symposium, Abstract with Program, Billings, Montana, pp 321–324Google Scholar
  39. Najafzadeh AR, Arvin M, Pan Y, Ahmadipour H (2008) Podiform chromitites in the Sorkhband ultramafic complex, Southern Iran: evidence for ophiolitic chromitite. J Sci, Islamic Republic of Iran 19(1):49–65Google Scholar
  40. Naldrett AJ, Lehmann J, Augé T (1989) Reactions between non-stochiometric chromite and sulfide as the explanation for Ni, Cu and PGE-enriched sulfides: examples from layered intrusions and ophiolites: magmatic Sulfide Conf, 5th, Harare, Zimbabwe ProcGoogle Scholar
  41. Neziraj A (1992) Etude petrologique et metallogenique du massif ophiolitique de Tropoja, Albania. Refeence particuliere aux gisements de chromite et elements du groupe du platine. These: Universite d’Orleans, p 510Google Scholar
  42. Nilsson LP (1989) Platinum-group mineral inclusions in ophiolitic chromite from the Osthammeren tectonite body, Norway. Geol Soc Finland Bull 61:42Google Scholar
  43. Nixon TG, Cabri LJ, Laflamme JHG (1990) Platinum-group element mineralization in lode and placer deposits associated with the Tulameen Alaskan-type complex, British Columbia. Can Mineral 28:503–535Google Scholar
  44. Ohnenstetter M (1996) Diversity of PGE deposits in basic-ultrabasic intrusive-single model of formation. In: Demaiffe D (ed) Petrology and geochemistry of magmatic suits of rocks in the continental and oceanic crusts. 337–354, Universite libre de BruxellesGoogle Scholar
  45. Page NJ, Engin T, Singer DA, Haftty J (1979) Palladium, platinum and rhodium concentrations in mafic and ultramafic rocks from the Kizildag and Guleman areas, Turkey, and the Faryab and Esfandaghe Abdasht areas, Iran. U.S. Geol Surv., open file, Report 79–340, p 15Google Scholar
  46. Peregoedova AV (1997) Etude experimentale de la cristallisation des mineraux des elements du groupe du platine a partir d’un liquid sulfure dans la plan Me9S8 du systeme Cu-Fe-Ni-S. These de l’universite de Novosibirsk (en Russe)Google Scholar
  47. Pouchou JL, Pichoir F (1984) Un nouveau modele de calcul pour la microanalyse quantitative par spectrometrie de rayons X. Partie I: application a l’analyse des echantillons homogenes. Rech Aerosp 3:167–192Google Scholar
  48. Pouchou JL, Pichoir F (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. In: Heinrich KFJ, Newbury DE (eds) Electron pobe quantitation. Plenum Press, New York, pp 31–75CrossRefGoogle Scholar
  49. Prichard HM, Neary CR, Potts PJ (1986) Platinum group minerals in the Shetland ophiolite. In: Gallagher MP, Ixer RA, Neary CR, Prichard HM (eds) Metallogeny of basic and ultrabasic rocks. Institution of Mining and Metallurgy, London, pp 395–414Google Scholar
  50. Prichard HM, Lord RA, Neary CR (1996) A model to explain the occurrence of platinum- and palladium-rich ophiolite complexes. J Geol Soc London 153:323–328CrossRefGoogle Scholar
  51. Proenza JA, Díaz-Martínez R, Iriondo A, Marchesi C, Melgarejo JC, Gervilla F, Garrido CJ, Rodríguez-Vega A, Lonzano-Santacruz R, Blanco-Moreno J (2006) Primitive Cretaceous island-arc volcanic rocks in eastern Cuba: the Téneme Formation. Geological Acta 4:103–121Google Scholar
  52. Rajabzadeh MA (1998) Mineralisation en chromite et elements du groupe du platine dans les ophiolites d’Assemion et de Neyriz, centrure du Zagros, Iran. Ph.D. These: Institue National Polytechnique de Lorraine, France, p 358Google Scholar
  53. Rajabzadeh MA, Moosavinasab Z (2012) Mineralogy and distribution of platinum group minerals (PGM) and other solid inclusions in the Neyriz ophiolitic chromitites, southern Iran. Can Mineral 50:643–665CrossRefGoogle Scholar
  54. Rollinson P (2005) Chromite in the mantle section of the Oman ophiolite: a new genetic model. The Island Arc 14:542–550CrossRefGoogle Scholar
  55. Sack PO (1982) Spinels as petrogenetic indicators: activity-composition relations at low pressures. Contrib Mineral Petrol 79:169–186CrossRefGoogle Scholar
  56. Stockman HW, Hlava PF (1984) Platinum-group minerals in alpine chromitites from south-western Oregon. Econ Geol 79:491–508CrossRefGoogle Scholar
  57. Stumpfl EF, Tarkian M (1976) Platinum genesis: new mineralogical evidences. Econ Geol 71:1451–1460CrossRefGoogle Scholar
  58. Talkington RW, Watkinson DM (1986) Whole rock platinum-group element trends in chromite-rich rocks in ophiolitic and stratiform igneous complexes. In: Gallagher MJ, Ixer RA, Neary CR, Prichard HM (eds) Metallogeny of basic and ultrabasic rocks. The Institution of Mining and Metallurgy Publ., London, UK, pp 427–440Google Scholar
  59. Talkington RW, Watkinson DH, Whittaker PJ, Jones PC (1984) Platinum group minerals and other solide inclusions in chromite of ophiolitic complexes: occurrences and petrological significance. Tschermakes Mineral Petrogr Mitt 32:285–300CrossRefGoogle Scholar
  60. Tarkian M, Prichard HM (1987) Irarsite-hollingworthite solid solution series and other associated Ru-Os-Ir an –Rh-bearing PGMs from the Shetland ophiolite complex. Miner Deposita 22:178–184CrossRefGoogle Scholar
  61. Tarkian M, Economou-Eliopoulos M, Eliopoulos DG (1992) Platinum-group minerals and tetraauricupride in ophiolitic rocks of Skyros Island, Greece. Mineral Petrol 47:55–66CrossRefGoogle Scholar
  62. Uysal I (2008) Platinum-Group Minerals (PGM) and other solid inclusions in the Elbistan-Kahramanmaraş mantle-hosted ophiolitic chromitites, South-eastern Turkey: their petrogenetic significance. Turk J Earth Sci 17:729–740Google Scholar
  63. Uysal I, SadiklarMB TM, Karsli O, Aydin F (2005a) Mineralogy and composition of the chromitites and their platinum-group minerals from Ortaca (Muğla – SW Turkey): evidence for ophiolitic chromitite genesis. Mineral Petrol 83:219–242CrossRefGoogle Scholar
  64. Uysal I, Tarkian M, Sadiklar MB (2005b) Petrogenesis of the ophiolitic chromitites from Muğla–Isparta–Antalya areas (SW–Turkey): platinum-group minerals and mafi c silicate inclusions in chromite. In: Törmänen TO, Alapieti TT (eds) 10th Int Platinum Symp (Oulu), extended abstr. University of Oulu, Oulu, pp 251–254Google Scholar
  65. Uysal I, Tarkian M, Sadiklar MB, Sen C (2007) Plainum – group elements geochemistry and mineralogy of ophiolitic chromitites from the Kop Mountain, northeastern Turkey. Can Mineral 45:355–377CrossRefGoogle Scholar
  66. Von Gruenewaldt G, Dicks D, Wet J, Horsch H (1990) PGE mineralization in the western sector of the Eastern Bushveld complex. Mineral Petrol 42:71–85CrossRefGoogle Scholar
  67. Zaccarini F, Pushkarev EV, Fershtater B, Garuti G (2004) Composition and mineralogy of PGE-rich chromitites in the Nurali lherzolite-gabbro complex, southern Urals, Russia. Can Mineral 42:545–562CrossRefGoogle Scholar
  68. Zaccarini F, Proenza JA, Ortega-Gutiérrez F, Garuti G (2005) Platinum group minerals in ophiolitic chromitites from Tehuitzingo (Acatlan Complex, Southern Mexico): implications for postmagmatic modification. Mineral Petrol 84:147–168CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Earth Sciences Department, Faculty of SciencesShiraz UniversityShirazIran

Personalised recommendations