Mineralogy and Petrology

, Volume 107, Issue 2, pp 221–233 | Cite as

A contribution to the crystal chemistry of the voltaite group: solid solutions, Mössbauer and infrared spectra, and anomalous anisotropy

  • Juraj Majzlan
  • Hannes Schlicht
  • Maria Wierzbicka-Wieczorek
  • Gerald Giester
  • Herbert Pöllmann
  • Beatrix Brömme
  • Stephen Doyle
  • Gernot Buth
  • Christian Bender Koch
Original Paper


Voltaite is a mineral of fumaroles, solfatares, coal-fire gas vents, and acid-mine drainage systems. The nominal composition is K2Fe5 2+Fe3 3+Al(SO4)12·18H2O and the nominal symmetry is cubic, \(Fd\overline{3}c\). The tetragonal (I41/acd) superstructure of voltaite is known as the mineral pertlikite. In this study, we investigated 22 synthetic voltaite samples in which Fe2+ was partially or completely replaced by Mg, Zn, Mn, or Cd, by single-crystal and powder X-ray diffraction (both in-house and synchrotron). Two samples contained NH4 + instead of K+. The structure of voltaite is based on a framework defined by kröhnkite-like heteropolyhedral chains which host both M3+ and M2+ in octahedral coordination. Unit cell dimensions of the end-members scale almost linearly with the size of M2+. In the Fe2+-Mg-Zn solid solutions, the Fe2+-Mg and Fe2+-Zn solutions are linear (ideal) in terms of their lattice-parameter variations. The Mg-Zn solid solution, however, is strongly non-ideal. A detailed analysis of the topology of the chains showed that this behavior originates in expansion and contraction of individual M2+-O bonds within the chains. In the Mg-Zn solid solution, some of the M2+-O bonds expand while none contract. In the other solid solutions, expansion of some M2+-O bonds is always compensated by contraction of the other ones. Parts of the nominally cubic crystals are optically anisotropic and their symmetry is found to be tetragonal by single crystal X-ray diffraction measurements. The coexistence of cubic and tetragonal sectors within a single crystal without any detectable difference in their chemical composition is difficult to explain in terms of growth of such composite crystals. Mössbauer and infrared spectra collected on our synthetic crystals conform with previously published data.


Divalent Cation Trivalent Cation M2O6 Octahedra Sulfate Tetrahedron Tetragonal Superstructure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to two anonymous reviewers for their constructive criticism. We thank D. Merten (Institute of Geosciences, Friedrich-Schiller-Universität Jena) for the ICP-OES analyses, H. Görls (Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-Universität Jena) for the single-crystal XRD data, G. Sentis (Institute of Pharmacy, Friedrich-Schiller-Universität Jena) for the infrared spectra, and B. Kreher-Hartmann (Institute of Geosciences, Friedrich-Schiller-Universität Jena) for the macrophotographs of the voltaite crystals. We acknowledge the ANKA Angströmquelle Karlsruhe for the provision of the beamtime at the PDIFF and SCD beamlines.

Supplementary material

710_2012_254_MOESM1_ESM.doc (658 kb)
ESM 1 (DOC 658 kb)


  1. Allen FM, Buseck PR (1988) XRD, FTIR, and TEM studies of optically anisotropic grossular garnets. Am Mineral 73:568–584Google Scholar
  2. Beveridge D, Day P (1979) Charge transfer in mixed valence solids. Part 9. Preparation, characterization, and optical spectroscopy of the mixed valence mineral voltaite [aluminum pentairon(II) triiron(III) dipotassiumdodecasulfate 18-hydrate] and its solid solutions with cadmium(II). J Chem Soc Dalton Trans 4:648–653CrossRefGoogle Scholar
  3. Brugger J, Bonin M, Schenk KJ, Miesser N, Berlepsch P, Ragu A (1999) Description and crystal structure of nabiasite, BaMn9[(V, As)O4]6(OH)2, a new mineral from the Central Pyrénées (France). Eur J Mineral 11:879–890Google Scholar
  4. Buerger MJ, Dollase WA, Garaycochea-Wittke I (1967) The structure and composition of the mineral pharmacosiderite. Z Kristallogr 125:92–108CrossRefGoogle Scholar
  5. Dahlman B (1952) The crystal structure of kroehnkite, CuNa2(SO4)2(H2O)2 and brandtite, MnCa2(AsO4)2(H2O)2. Ark Mineral Geol 1:339–366Google Scholar
  6. Ertl A, Dyar MD, Hughes JH, Brandstatter F, Gunter ME, Prem M, Peterson RC (2008) Pertlikite, a new tetragonal Mg-rich member of the voltaite group from Madeni Zakh, Iran. Can Mineral 46:661–669CrossRefGoogle Scholar
  7. Fleck M, Kolitsch U, Hertweck B (2002) Natural and synthetic compounds with kröhnkite-type chains: review and classification. Z Kristallogr 217:435–443CrossRefGoogle Scholar
  8. Gieré R, Blackford M, Smith KL, Williams CT, Kirk C (2007) Metal sulfates in PM emissions from a coal-fired power plant. Goldschmidt conference abstracts, A322Google Scholar
  9. Gossner B, Arm M (1930) Chemische und röntgenographische Untersuchung an Stoffen und Kristallen von komplexer Bauart. Z Kristallogr 72:202–236Google Scholar
  10. Gossner B, Bäuerlein T (1933) Optical anomalies: voltaite-like sulfates. NJb Min Geol Pal 66A:1–40Google Scholar
  11. Gossner B, Besslein J (1934) Hydrated sulfates of three metals. Centr Mineral Geol 1934A:358–364Google Scholar
  12. Gossner B, Drexler K (1933) Structural and molecular units of sulfates of the voltaite type. Centr Mineral Geol 1933A:83–91Google Scholar
  13. Gossner B, Fell E (1932) Sulfates of the voltaite type. Ber Deutsch Chem Ges 65B:393–395Google Scholar
  14. Griffen DT, Ribbe PH (1979) Distortions in the tetrahedral oxyanions of crystalline substances. Neues Jahrb Miner Abh 137:54–73Google Scholar
  15. Hawthorne FC, Krivovichev SV, Burns PC (2000) The crystal chemistry of sulfate minerals. Rev Mineral Geochem 40:1–112CrossRefGoogle Scholar
  16. Hermon E, Haddad R, Simkin D, Brandao DE, Muir WB (1976) Magnetic properties and the distribution of iron ions in voltaites. Can J Phys 54:1149–1156CrossRefGoogle Scholar
  17. Hertweck B, Libowitzky E (2002) Vibrational spectroscopy of phase transitions in leonite-type minerals. Eur J Mineral 14:1009–1017. doi: 10.1127/0935-1221/2002/0014-1009 CrossRefGoogle Scholar
  18. Jambor JL, Nordstrom DK, Alpers CN (2000) Metal-sulfate salts from sulfide mineral oxidation. Rev Mineral Geochem 40:303–350. doi: 10.2138/rmg.2000.40.6 CrossRefGoogle Scholar
  19. Long GJ, Longworth G, Day P, Beveridge D (1980) A Mössbauer-effect study of the electronic and magnetic properties of voltaite, a mixed-valence. Mineral Inorg Chem 19:821–829CrossRefGoogle Scholar
  20. Majzlan J, Alpers CN, Bender Koch C, McCleskey RB, Myneni SCB, Neil JM (2011) Vibrational, X-ray absorption, and Mössbauer spectra of sulfate minerals from the weathered massive sulfide deposit at Iron Mountain, California. Chem Geol 284:296–305CrossRefGoogle Scholar
  21. Marquez-Zavalia MF, Lomniczi de Upton I, Galliski MA (2001) Krausite in fumaroles from Santa Barbara mine, northwestern Argentina. Neues Jb Miner Monat 8:378–384Google Scholar
  22. Mereiter K (1972) Die Kristallstruktur des Voltaits, K2Fe5 2+Fe3 3+Al[SO4]12∙18H2O. Tschermaks Min Petr Mitt 18:185–202CrossRefGoogle Scholar
  23. Mookherjee M, Redfern SAT, Zhang M, Harlov DE (2002) Orientational order–disorder of ND4 +/NH4 +in synthetic ND4 +/NH4 +- phlogopite: a low-temperature infrared study. Eur J Mineral 14:1033–1039CrossRefGoogle Scholar
  24. Nordstrom DK, Alpers CN (1999) Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountain. Proc Natl Acad Sci USA 96:3455–3462CrossRefGoogle Scholar
  25. Peterson RC, Valyashko E, Wang R (2009) The atomic structure of (H3O)Fe3+(SO4)2 and rhomboclase, (H5O2)Fe3+(SO4)2·2H2O. Can Mineral 47:625–634CrossRefGoogle Scholar
  26. Rammelsberg CF (1860) Handbuch der Mineralchemie. Verlag von Wilhelm Engelman, LeipzigCrossRefGoogle Scholar
  27. Rondeau B, Fritsch E, Guiraud M, Chalain JP, Notari F (2004) Three historical ‘asteriated’ hydrogen-rich diamonds: growth history and sector-dependent impurity incorporation. Diam Relat Mater 13:1658–1673CrossRefGoogle Scholar
  28. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A32:751–767Google Scholar
  29. Sheldrick G (2008) A short history of SHELX. Acta Crystallogr A64:112–122Google Scholar
  30. Shigley JE, Fritsch E, Stockton CM, Koivula JI, Fryer CW, Kane RE (2005a) The gemological properties of the Sumitomo gem-quality synthetic yellow diamonds. In: Shigley JE (ed) Synthetic diamonds. Gems & Gemology in Review 30–45Google Scholar
  31. Shigley JE, Fritsch E, Stockton CM, Koivula JI, Fryer CW, Kane RE, Hargett DR, Welch CW, (2005b) The gemological properties of the De Beers gem-quality synthetic diamonds. In: Shigley JE (ed) Synthetic diamonds. Gems & Gemology in Review 46–64Google Scholar
  32. Shtukenberg AG (2005) Metastability of atomic ordering in lead-strontium nitrate solid solutions. J Solid State Chem 178:2608–2612CrossRefGoogle Scholar
  33. Shtukenberg AG, Popov DY, Punin YO (2005) Growth ordering and anomalous birefringence in ugrandite garnets. Mineral Mag 69:537–550CrossRefGoogle Scholar
  34. Stracher GB, Prakash A, Schroeder P, McCormack J, Zhang X, Van Dijk P, Blake D (2005) New mineral occurrences and mineralization processes: Wuda coal-fire gas vents of Inner Mongolia. Am Mineral 90:1729–1739CrossRefGoogle Scholar
  35. Welbourn CM, Cooper M, Spear PM (2005) De Beers natural versus synthetic diamond verification instruments. In: Shigley JE (ed) Synthetic diamonds. Gems & Gemology in Review 139–151Google Scholar
  36. Wildner M, Andrut M (2001) The crystal chemistry of birefringent natural uvarovites: Part II. Single-crystal X-ray structures. Am Mineral 86:1231–1251Google Scholar
  37. Zavalia MFM, Galliski MA (1995) Goldichite of fumarolic origin from the Santa Barbara mine, Jujuy, northwestern Argentina. Can Mineral 33:1059–1062Google Scholar
  38. Zemann J (1948) Formel und Strukturtyp des Pharmakosiderits. Tschermaks Min Petr Mitt 1:1–13CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  • Juraj Majzlan
    • 1
  • Hannes Schlicht
    • 1
  • Maria Wierzbicka-Wieczorek
    • 1
  • Gerald Giester
    • 2
  • Herbert Pöllmann
    • 3
  • Beatrix Brömme
    • 3
  • Stephen Doyle
    • 4
  • Gernot Buth
    • 4
  • Christian Bender Koch
    • 5
  1. 1.Institute of GeosciencesFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Institute of Mineralogy and Crystallography, Faculty of Geosciences, Geography and AstronomyUniversity of ViennaViennaAustria
  3. 3.Institute of GeosciencesMartin-Luther-Universität Halle-WittenbergHalleGermany
  4. 4.ANKAKarlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
  5. 5.Department of ChemistryUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations