Mineralogy and Petrology

, Volume 107, Issue 1, pp 67–99 | Cite as

Tellurium-bearing minerals in zoned sulfide chimneys from Cu-Zn massive sulfide deposits of the Urals, Russia

  • V. V. Maslennikov
  • S. P. Maslennikova
  • R. R. Large
  • L. V. Danyushevsky
  • R. J. Herrington
  • C. J. Stanley
Original Paper


Tellurium-bearing minerals are generally rare in chimney material from mafic and bimodal felsic volcanic hosted massive sulfide (VMS) deposits, but are abundant in chimneys of the Urals VMS deposits located within Silurian and Devonian bimodal mafic sequences. High physicochemical gradients during chimney growth result in a wide range of telluride and sulfoarsenide assemblages including a variety of Cu-Ag-Te-S and Ag-Pb-Bi-Te solid solution series and tellurium sulfosalts. A change in chimney types from Fe-Cu to Cu-Zn-Fe to Zn-Cu is accompanied by gradual replacement of abundant Fe-, Co, Bi-, and Pb- tellurides by Hg, Ag, Au-Ag telluride and galena-fahlore with native gold assemblages. Decreasing amounts of pyrite, both colloform and pseudomorphic after pyrrhotite, isocubanite ISS and chalcopyrite in the chimneys is coupled with increasing amounts of sphalerite, quatz, barite or talc contents. This trend represents a transition from low- to high sulphidation conditions, and it is observed across a range of the Urals deposits from bimodal mafic- to bimodal felsic-hosted types: Yaman-Kasy → Molodezhnoye → Uzelga → Valentorskoye → Oktyabrskoye → Alexandrinskoye → Tash-Tau → Jusa.


Pyrite Chalcopyrite Galena Hydrothermal Fluid Bi2Te3 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to John Spratt, Terry Greenwood (Natural History Museum), Klaus Bekker (Freiberg Mining Academy), Dave Steel (University of Tasmania), Vasiliy Kotlyarov, Evgeniy Churin (Institute of Mineralogy UB RAS) for assistance with analytical work. Constructive comments from Cristina Ciobanu and an anonymous reviewer helped us to improve the manuscript. The study was supported by the Australian Research Council funding to the Centre of Excellence in Ore Deposits (CODES); Royal Society and the Natural History Museum; Presidium of the Russian Academy of Sciences program N 23 (12–P–5–1003); and Russian Ministry of Education (НК–544П/14).


  1. Afifi AM, Kelly WC, Essene EJ (1988a) Phase relations among tellurides, sulfides, and oxides: I. Thermodynamical data and calculated equilibria. Econ Geol 83:377–394CrossRefGoogle Scholar
  2. Afifi AM, Kelly WC, Essene EJ (1988b) Phase relations among tellurides, sulfides, and oxides: II. Application to telluride-bearing ore deposits. Econ Geol 83:395–404CrossRefGoogle Scholar
  3. Ahmad M, Solomon M, Walshe JL (1987) Mineralogical and geochemical studies of the Emperor gold telluride deposit, Fiji. Econ Geol 82:345–370CrossRefGoogle Scholar
  4. Barton PB, Toulmin P (1966) Phase relations involving sphalerite in Fe-Zn-S system. Econ Geol 61:815–849CrossRefGoogle Scholar
  5. Bayliss P (1991) Crystal chemistry and crystallography of some minerals in the tetradymite group. Am Mineral 76:257–265Google Scholar
  6. Bortnikov NS, Cabri LJ, Vikentyev IV (2003) Invisible gold in sulfides of modern sulfide edifices. Geol Ore Deposits 45:232–245 (in Russian)Google Scholar
  7. Bortnikov NS, Kramer H, Genkin AD, Krapiva LY, Santa-Crus M (1988) Paragenesis of gold-silver tellurides in gold deposit Florensy (Cuba). Geol Ore Deposits 30:49–61, in RussianGoogle Scholar
  8. Buschmann B, Maslennikov VV (2006) The late Ordovican or earliest Silurian hydrothermal vent fauna from Yaman Kasy VMS deposit (South Uralides, Russia). Paläont Stratigr Fazies 14:139–172Google Scholar
  9. Cabri LJ (1965) Phase relations in the Au-Ag-Te system and their mineralogical significance. Econ Geol 60:1569–1606CrossRefGoogle Scholar
  10. Caillat T, Carle M, Perrin D, Scherrer H, Scherrer S (1992) Study of the Bi-Sb-Te ternary phase diagram. J Phys Chem Solids 53:227–232CrossRefGoogle Scholar
  11. Ciobanu CL, Cook NJ, Spry PG (2006) Preface – special issue: telluride and selenide minerals in gold deposits – how and why. Miner Petrol 87:163–169CrossRefGoogle Scholar
  12. Ciobanu CL, Cook NJ, Pring A, Damian G (2008) Another look at nagyágite from the type locality, Sǎcǎrîmb, Romania: replacement, chemical variation and petrogenetic implications. Mineral Petrol 93:273–307CrossRefGoogle Scholar
  13. Ciobanu CL, Pring A, Cook NJ, Self P, Jefferson D, Dima GI, Melnikov V (2009) Crystal-structural modularity in the tetradymite group: a HRTEM study. Am Mineral 94:517534. doi: 10.2138/am.2009.2906 CrossRefGoogle Scholar
  14. Cooke DR, McPhail DC (2001) Epithermal Au-Ag-Te mineralization, Acupan, Baguio Philippines; numerical simulations of mineral deposition. Econ Geol 96:109–131Google Scholar
  15. Cook NJ, Ciobanu CL, Spry PG, Voudouris P, and the participants of IGCP-486 (2009) Understanding gold-(silver)-telluride-(selenide) deposits. Episodes 32:249–263Google Scholar
  16. Cook NJ, Ciobanu CL, Stanley CJ, Paar W, Sunblad K (2007a) Compositional data for Bi-Pb tellurosulfides. Can Mineral 45:417–435. doi: 10.2113/gscanmin.45.3.417 CrossRefGoogle Scholar
  17. Cook NJ, Ciobanu CL, Wagner T, Stanley J (2007b) Minerals of the system Bi–Te–Se–S related to the tetradymite archetype: review of classification and compositional variation. Can Mineral 45:665–708CrossRefGoogle Scholar
  18. Criddle AJ, Chisholm JE, Stanley CJ (1989) Cervelleite, Ag4TeS, a new mineral from the Bambolla mine, Mexico, and a description of a photo-chemical reaction involving cervelleite, acanthite and hessite. Eur J Mineral 1:371–380Google Scholar
  19. Danyushevsky LV, Robinson R, Gilbert S, Norman M, Large R, McGoldrick P, Shelley JMG (2011) Routine quantitative multi-element analysis of sulfide minerals by laser ablation ICP-MS: standard development and consideration of matrix effects. Geochim Explor Environ Anal 11:51–60CrossRefGoogle Scholar
  20. Danyushevsky L, Robinson P, McGoldrick P, Large R, Gilbert S (2003) LA–ICPMS of sulfides: Evaluation of an XRF glass disc standard for analysis of different sulfide matrixes. 2003 Goldschmidt Conference, Japan. Geochim Cosmochim Acta 67, 18, A73 SupplGoogle Scholar
  21. Echmaeva EA, Osadchii EG (2009) Determination of the thermodynamic properties of compounds in the Ag-Au-Se and Ag-Au-Te systems by the EMF method. Geol Ore Dep 51:247–258CrossRefGoogle Scholar
  22. Eremin NI (1983) Differentiation of volcanogenic sulfide deposits. Moscow state university press, Moscow, p 256, in RussianGoogle Scholar
  23. Fouquet Y, Wafic A, Cambon P, Mevel C, Meyer C, Gente P (1993) Tectonic setting and mineralogical and geochemical zonation in the Snake Pit Sulfide Deposit (Mid Atlantic Ridge at 23 ºN). Econ Geol 88:2018–2036CrossRefGoogle Scholar
  24. Franklin JM, Gibson HL, Jonasson IR, Galley AG (2005) Volcanogenic massive sulfide deposits. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic geology One hundredth anniversary volume. 1905–2005. Society of Economic Geologist, Inc, Littleton, pp 523–560Google Scholar
  25. Glasby GP, Prozherova IA, Maslennikov VV, Petukhov SI (2006) Jusa and Barsuchi Log volcanogenic massive sulfide deposits from the Southern Urals of Russia: tectonic setting, structure and mode of formation. Resour Geol 57:24–36CrossRefGoogle Scholar
  26. Grabezhev AI, Moloshag VP, Sotnikov VI, Murzin VV, Korovko AV, Zhuxlistov AP (2001) Metasomatic aureole of Saphyanovskoye zinc-copper deposit (Middle Urals). Petrology 9:294–312 (in Russian)Google Scholar
  27. Graham UM, Bluth GJ, Ohmoto H (1988) Sulfide-sulphate chimneys on the East Pacific Rise, 11 ° and 13 °N latitudes. Part 1: mineralogy and paragenesis. Can Mineral 26:487–504Google Scholar
  28. Gusev GS, Gushchin AV, Zaykov VV, Maslennikov VV, Mezhelovsky NV, Perevolozchnikov BV et al (2000) Geology and metallogeny of island arcs. In: Mezhelovsky NN et al (eds) Geodynamics and metallogeny: theory and implication for applied geology. Ministry of Natural resources of the RF and GEOKART Ltd, Moscow, pp 213–295 (in Russian)Google Scholar
  29. Halbach P, Fouquet Y, Herzig P (2003) Mineralization and compositional patterns in deep-sea hydrothermal systems. In: Halbach PE, Tunnicliffe V, Hein JR (eds) Energy and mass transfer in marine hydrothermal systems. Dalhem University Press, Berlin, pp 85–122Google Scholar
  30. Halbach P, Pracejus B (1988) Geology and mineralogy of massive ores from Central Okinawa Trough, Japan. Econ Geol 88:2210–2225CrossRefGoogle Scholar
  31. Hannington MD, Scott SD (1988) Mineralogy and geochemistry of a hydrothermal silica-sulfide -sulphate spire in the caldera of Axial Seamount, Juan de Fuca Ridge. Can Mineral 26:603–626Google Scholar
  32. Hannington MD, Scott SD (1989) Sulphidation equilibria as guides to gold mineralization in volcanogenic massive sulfides: evidence from sulfide mineralogy and composition of sphalerite. Econ Geol 84:1978–1995CrossRefGoogle Scholar
  33. Haymon RM (1983) Growth history of hydrothermal black smoker chimneys. Nature 305:695–698CrossRefGoogle Scholar
  34. Herrington RJ, Maslennikov VV, Spiro B, Zaykov VV, Little CTS (1998) Ancient vent chimney structures in the Silurian massive sulfides of the Urals. In: Mills RA, Harrison K (eds) Modern ocean floor processes and the geological record. Geol Soc Lond 148: 241–257Google Scholar
  35. Herrington R, Maslennikov V, Zaykov V, Seravkin I, Kosarev A, Buschmann B et al (2005a) Classification of VMS deposits: lesson from the South Uralides. Ore Geol Rev 27:203–237CrossRefGoogle Scholar
  36. Herrington R, Zaykov V, Maslennikov V, Brown D, Puchkov V (2005b) Mineral deposits of the Urals and links to geodynamic evolution. Economic Geology: One Hundredth Anniversary Volume 1069–1095Google Scholar
  37. Herrington RJ, Armstrong RN, Zaykov VV, Maslennikov VV, Tessalina SG, Orgeval J-J et al (2002) Massive sulfide deposits in the South Urals: geological setting within the framework of the Uralide orogen. In: Brown D, Juhlin C, Puchkov VN (eds) Mountain building in the Uralides: Pangea to the present. Geophysical monograph 132. American Geophysical Union, Washington, pp 155–182CrossRefGoogle Scholar
  38. Honea RM (1964) Empressite and stuetzite redefined. Am Mineral 49:325–338Google Scholar
  39. Iizasa K, Yuasa M, Yokota S (1992) Mineralogy and geochemistry of volcanogenic sulfides from the Myojinsho submarine caldera, the Shichito-Iwojima Ridge, Izu-Ogasawara Arc, northwestern Pacific. Mar Geol 108:39–58CrossRefGoogle Scholar
  40. Jaireth S (1991) Hydrothermal geochemistry of Te, Ag2Te and AuTe2 in epithermal precious metal deposits. EGRU Contrib 37:1–21Google Scholar
  41. Janecky DR, Seyfried WE (1984) Formation of massive sulfide deposits on oceanic ridge crust: incremental reaction models for mixing between hydrothermal solutions and seawater. Geochim Cosmochim Acta 48:2723–2738CrossRefGoogle Scholar
  42. Juniper SK, Jonasson IR, Tunnicliffe V, Southward AJ (1992) Influence of a tube-building polychaete on hydrothermalchimney mineralization. Geology 20:895–898Google Scholar
  43. Karakaya I, Thompson WT (1991) The Ag-Te (silver-tellurium) system. J of Phase Equilibria 12(1):56–63Google Scholar
  44. Karpinsky OG, Shelimova LE, Avilov ES, Kretova MA, Zemskov VS (2002) X-ray diffraction study of mixed layer compounds in the PbTe-Bi2Te3 system. Inorg Mater 38:17–24CrossRefGoogle Scholar
  45. Karup-Möller S (1994) Phases and phase relations in the Cu-Te-S system at temperatures between 350 º and 900 °C. N Jb Miner Abh 166:13–136Google Scholar
  46. Kase K, Kusachi I, Kishi S (1993) Rucklidgeite solid-solution I the Yanahara deposit, Japan. Can Mineral 31:99–104Google Scholar
  47. Keutsch FN, Förster H-J, Stanley CJ, Rhede D (2009) The discreditation of hastite, the orthorhombic dimorph of CoSe2, and observations on trogtalite, cubic CoSe2, from the type locality. Can Mineral 47:969–976CrossRefGoogle Scholar
  48. Kontar ES (2001) Condition of location and history of formation of copper, zinc and lead in the Urals. Department of Natural resources of the Urals, Ekaterinburg, p 133, in RussianGoogle Scholar
  49. Kontar ES, Libarova LE (1997) Metallogeny of copper, zinc, lead at the Urals. Uralgeolcom, Ekaterinburg, p 233, in RussianGoogle Scholar
  50. Koroteev VA, de Boorder H, Necheukhin VM, Sazonov VN (1987) Geodynamic setting of the mineral deposits of the Urals. Tectonophys 276:91–300Google Scholar
  51. Large RR, Danyushevsky LD, Hollit C, Maslennikov VV, Meffre S, Gilbert S, Bull S, Scott R, Emsbo P, Thomas H, Singh R, Foster J (2009) Gold and trace element zonation in pyrite using a laser imaging technique; implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Econ Geol 104:635–668CrossRefGoogle Scholar
  52. Lehmann B, Heinhorst J, Hein M et al (1999) The Bereznjakovskoje gold trend, Southern Urals, Russia. Mineral Deposita 34:241–249CrossRefGoogle Scholar
  53. Little CTS, Herrington RJ, Maslennikov VV, Morris NJ, Zaykov VV (1997) Silurian high-temperature hydrothermal vent community from the southern Urals, Russia. Nature 385:3–6CrossRefGoogle Scholar
  54. Little CTS, Maslennikov VV, Morris NJ, Gubanov AP (1999) Two Palaeozoic hydrothermal vent communities from the Southern Ural Mountains, Russia. Palaeontol 42:1043–1078CrossRefGoogle Scholar
  55. Longerich HP, Jackson SE, Gunte D (1996) Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J Anal At Spectrom 11:899–904CrossRefGoogle Scholar
  56. Marchig V, Rösch H (1988) Mineralogical zonation and radiochronological relations in a large sulfide chimney from the East Pacific Rise at 18 °25 ′S. Can Mineral 26:541–554Google Scholar
  57. Markcham NL (1960) Synthetic and natural phases in the system Au-Ag-Te. Econ Geol 55:1460–1477CrossRefGoogle Scholar
  58. Maslennikov VV (1991) Lithological control of cupper massive sulfide ores (after the example of Sibai and Oktyabrskoye deposits, Ural). UB AS USSR, Sverdlovsk, p 139, in RussianGoogle Scholar
  59. Maslennikov VV (1999) Sedimentogenesis, halmyrolysis, and ecology of massive sulfide-bearing paleohydrothermal fields (after example of the Southern Urals). Geotur press, Institute of Mineralogy of UB RAS press, Miass, p 348, in RussianGoogle Scholar
  60. Maslennikov VV (2006) Lithogenesis and massive sulfide deposits formation. Institute of Mineralogy of UB RAS press, Miass, p 384, in RussianGoogle Scholar
  61. Maslennikov VV, Herrington RJ, Buslaev FP, Stanley CJ (1997) Native tellurium, tellurides and sulfurtellurides in sulfide chimneys of black smokers of the Yaman-Kasy Cu-Zn-massive sulfide deposit (South Ural). Ural Mineral Sb 7:53–67 (in Russian)Google Scholar
  62. Maslennikov VV, Lein AY, Maslennikova SP, Bogdanov YA (2010) Phanerozoic black smokers as indicators of ore hosting complexes contents. Lithosphere 3:153–162 (in Russian)Google Scholar
  63. Maslennikov VV, Maslennikova SP, Large RR, Danyushevsky LV (2009) Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy VHMS (the Southern Urals, Russia) using laser ablation inductively coupled plasma mass spectrometry (LA-ICP MS). Econ Geol 104:1111–1141CrossRefGoogle Scholar
  64. Maslennikova SP, Maslennikov VV (2007) Sulfide chimneys of Paleozoic black smokers (after the example of Ural). UB RAS, Ekaterinburg-Miass, p 312, in RussianGoogle Scholar
  65. McPhail DC (1995) Thermodynamic properties of tellurium species between 25 ° and 350 °C. Geochim Cosmochim Acta 59:851–866Google Scholar
  66. Metz S, Trefry JH (2000) Chemical and mineralogical influences on concentration of trace elements in hydrothermal fluids. Geochim Cosmochim Acta 64:2267–2279CrossRefGoogle Scholar
  67. Moloshag VP, Gulyaeva TYa (1990) Telluride mineralization of the Urals massive sulfide deposits. In: Koroteev VA (ed) Annualcollection-1989. Sverdlovsk: Institute of Geology and Geochemistry Academy of Scoence of USSR, pp 94–95, in RussianGoogle Scholar
  68. Moloshag VP, Grabezhev AI, Gulyaeva TY (2002) Conditions of telluride formation in ores of the Urals massive sulfide and copper-gold-porphyry deposits. Zap Vser Mineral Obsch 131(5):40–53, in RussianGoogle Scholar
  69. Murowchick JB, Barnes HL (1986) Marcasite precipitation from hydrothermal solution. Geochim Cosmochim Acta 50:2615–2629CrossRefGoogle Scholar
  70. Nguyen SL, Jang JI, Ketterson JB, Kanatzidis MG (2010) (Ag2TeS3)2·A2S6 (A=Rb, Cs): layeres of silver thiotellurite intergrown with alkali-metal polysulfides. Inorg Chem 49:9098–9100. doi: 10.1021/ic1011346 CrossRefGoogle Scholar
  71. Novgorodova MI, Tsepin AI, Dmitrieva MT (1978) The new isomorphic series in grey ore group. Zap Vses Mineral Obsch 107:100–110 (in Russian)Google Scholar
  72. Novoselov KA, Belogub EV, Zaykov VV, Yakovleva VA (2006) Silver sulfotellurides from volcanic-hosted massive sulfide deposits in the Southern Urals. Mineral Petrol 87:327–349CrossRefGoogle Scholar
  73. Oudin E, Constantinou G (1984) Black smoker chimney fragments in Cyprus sulfide deposits. Nature 308:349–353CrossRefGoogle Scholar
  74. Paradis S, Jonasson IR, Le Cheminant GM, Watkinson DH (1988) Two zinc-rich chimneys from the plume site, Southern Juan de Fuca Ridge. Can Mineral 26:637–654Google Scholar
  75. Pertlik F (1997) Crystal structure of Ag2TeS3 and Na(Na1-xAgxTeS3 (x ≈ 0.5) and the geometry of Te(IV)S3 polyhedra. Monatsh Chem 128:157–163CrossRefGoogle Scholar
  76. Peter JM, Scott SD (1988) Mineralogy, composition, and fluid-inclusion microthermometry of seafloor hydrothermal deposits in the Southern Trough of Guaymas Basin, Gulf of California. Can Mineral 26:567–587Google Scholar
  77. Prokin VA, Buslaev FP (1999) Massive copper-zinc sulfide deposits in the Urals. Ore Geol Rev 14:1–69CrossRefGoogle Scholar
  78. Puchkov VN (2010) Geology of the Urals and Preurals (actual questions of stratigraphy, tectonics, geodynamics, and metallogeny). DizainPoligraphServis, Ufa, p 280, in RussianGoogle Scholar
  79. Saphina NP, Maslennikov VV (2008) Ore clastites of the Yaman-Kasy and Saphyanovka VMS deposits (Urals). the scientific edition. Institute of Mineralogy of UB RAS press, Miass, p 260, in RussianGoogle Scholar
  80. Seravkin IB (2010) The metallogeny of the Southern Urals and the Central Kazakhstan. Gilem, Ufa, p 281, in RussianGoogle Scholar
  81. Shadlun TN (1942) On colloform structural ores of the Yaman-Kasy deposit in Southern Ural. Zap Vses Mineral Obsch 3:151–159 (in Russian)Google Scholar
  82. Shadlun TN (1991) Some sulfide intergrowths typical for modern oceanic and ancient massive sulfide ores. Geol Ore Deposits 33:110–118 (in Russian)Google Scholar
  83. Shelimova LE, Karpinsky OG, Kosykov VI, Shestakov VA, Zemskov VS, Kuznetsov FA (2000) Homologous series of layered tetradymite-like compounds in Bi-Te and GeTe-Bi2Te3 systems. J Struct Chem 41:81–87CrossRefGoogle Scholar
  84. Shelimova LE, Karpinsky OG, Konstantinov PP, Avilov ES, Kretova MA, Zemskov VS (2004a) Crystal structures and thermoelectric properties of layered compounds in the ATe-Bi2Te3 (A = Ge, Sn, Pb) systems. Inorg Mater 40:451–460CrossRefGoogle Scholar
  85. Shelimova LE, Karpinsky OG, Svechnikova TE, Avilov ES, Kretova MA, Zemskov VS (2004b) Synthesis and structure of layered compounds in the PbTe-Bi2Te3 and PbTe-Sb2Te3 systems. Inorg Mater 40:1264–1270CrossRefGoogle Scholar
  86. Shikazono NA (1985) Comparison of temperatures estimated from the electrum-sphalerite-pyrite-argentite assemblage and filling temperatures of fluid implications from epithermal Au-Ag vein type deposits in Japan // Econ Geol 80(5): 1415–1424Google Scholar
  87. Shimizu M, Stanley CJ (1991) Coupled substitutions in goldfieldite-tetrahedrite minerals from the Iriki mine, Japan. Miner Mag 55:515–519CrossRefGoogle Scholar
  88. Simonov VA, Kovyazin SV, Terenya EO, Maslennikov VV, Zaykov VV, Maslennikova SP (2006) Physical-chemical parameters of magmatic and hydrothermal processes in the Yaman-Kasy massive sulfide deposit (South Ural). Geol Ore Deposits 48:423–438 (in Russian)CrossRefGoogle Scholar
  89. Stanley CJ, Criddle AJ, Chisholm JE (1986) Benleonardite, a new mineral from the Bambolla mine, Moctezuma, Sonora, Mexico. Miner Mag 50:681–686CrossRefGoogle Scholar
  90. Tessalina SG, Bourdon B, Maslennikov VV, Orgeval J-J, Birck J-L, Gannoun A, Capmas F, Allègre C-J (2008) Osmium isotope distribution within the Palaeozoic Alexandrinka seafloor hydrothermal system in the Southern Urals, Russia. Ore Geol Rev 33:70–80CrossRefGoogle Scholar
  91. Tessalina SG, Maslennikov VV, Surin TN (1998) Alexandrinka VMS deposit (East Magnitogorsk paleoisland arc, Urals). Institute of Mineralogy of UB RAS press, Miass, p 228, in RussianGoogle Scholar
  92. Trudu AG, Knittel U (1998) Crystallography, mineral chemistry and chemical nomenclature of goldfieldite, the tellurian member of the tetrahedrite solid-solution series. Can Mineral 36:1115–1137Google Scholar
  93. Vikentyev IV (2006) Precious metal and telluride mineralogy of large volcanic-hosted massive sulfide deposits in the Urals. Mineral Petrol 87:305–326CrossRefGoogle Scholar
  94. Vikentyev IV, Belenkaya YA, Ageev BI (2000) Alexandrinskoye massive sulfide polymetallic deposit (the Urals, Russia). Geol Ore Deposits 42:248–274 (in Russian)Google Scholar
  95. Vikentyev IV, Yudovskaya MA, Mokhov AV, Kerzin AL, Tsepin AI (2004) Gold and PGE in massive sulfide ore of the Uzelginsk deposit, Southern Urals, Russia. Can Mineral 42:651–665CrossRefGoogle Scholar
  96. Voicu G, Bardoux M, Jebrak M (1999) Tellurides from the Paleoproterozoic Omai gold deposit, Guiana Shield. Can Mineral 37:559–573Google Scholar
  97. Voudouris P, Spry PG, Sakellaris GA, Mavrogonatos C (2011) A cervelleite-like mineral and other Ag-Cu-Te-S minerals [Ag2CuTeS and (Ag,Cu)2TeS] in gold-bearing veins in metamorphic rocks of the Cycladic Blueschist Unit, Kallianou, Evia Island, Greece. Mineral Petrol 101:169–183CrossRefGoogle Scholar
  98. Zaykov VV (2006) Volcanism and sulfide mounds of paleoocean margins. Nauka, Moscow, p 428, in RussianGoogle Scholar
  99. Zaykov VV, Shadlun TN, Maslennikov VV, Bortnikov NS (1995) Yaman-Kasy sulfide deposit – ancient “black smoker” of Urals paleoocean. Geol Ore Deposits 37:511–529 (in Russian)Google Scholar
  100. Zhabin AG, Samsonova NS (1975) Traces of disappeared pyrrhotite in massive sulfide deposits. Zap Vses Mineral Obsch 104:346–350 (in Russian)Google Scholar
  101. Zierenberg RA, Koski RA, Morton JL, Bouse RM (1993) Genesis of massive sulfide deposits on a sediment-covered spreading center, Escanaba trough, Southern Gorda Ridge. Econ Geol 88:2069–2099CrossRefGoogle Scholar
  102. Zonenshain LP, Korinevski VG, Kazmin VG, Pecherski DM, Knain VV, Matveenkov VV (1984) Plate tectonic model of the South Urals development. Tectonophys 109:95–135CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  • V. V. Maslennikov
    • 1
  • S. P. Maslennikova
    • 2
  • R. R. Large
    • 3
  • L. V. Danyushevsky
    • 3
  • R. J. Herrington
    • 4
  • C. J. Stanley
    • 4
  1. 1.Institute of Mineralogy, Ural Devision of RAS, and the South Ural State UniversityMiassRussia
  2. 2.Institute of Mineralogy, Ural Division of RAS, and the South Ural State UniversityMiassRussia
  3. 3.CODES ARC Centre of Excellence in Ore Deposits and School of Earth SciencesUniversity of TasmaniaHobartAustralia
  4. 4.Department of MineralogyNatural History MuseumLondonUK

Personalised recommendations