Mineralogy and Petrology

, Volume 106, Issue 1–2, pp 1–17 | Cite as

Oriented feldspar-feldspathoid intergrowths in rocks of the Khibiny massif: genetic implications

  • Olga A. Ageeva
  • Rainer Abart
  • Gerlinde Habler
  • Boris Ye. Borutzky
  • Nikolay V. Trubkin
Original Paper

Abstract

Poikilitic megacrysts of alkali feldspar with abundant inclusions of feldspar-nepheline and feldspar-kalsilite micrographic or lamellar intergrowths are characteristic for the rischorrites of the Khibiny massif. Strict crystallographic orientation relations were identified among the intergrowth phases based on optical investigation using a 4-axes universal stage and crystal orientation imaging using electron back scatter diffraction. The most frequently observed orientation relation is the parallel orientation of the kalsilite and nepheline [001] directions with the [010] direction of the alkali feldspar host and concomitant coincidence of the feldspathoid [100] directions with the [100]-, [101]- and [001] directions of the alkali feldspar. The presence of relic nepheline within intergrowth domains and the successive replacement of precursor nepheline by alkali feldspar and associated formation of feldspar-feldspathoid intergrowth suggest development of the rischorrites from feldspar urtites, in which nepheline is the dominant felsic phase. The metasomatic nature of the transformation of urtites to rischorrites is identified from massive introduction of potassium and silica and removal of sodium. Metasomatism occurred at high temperature; the gigantic apatite deposits of the Khibiny massif seem to be related to this metasomatic event.

References

  1. Abbott RN Jr (1984) KAlSiO4 stuffed derivatives of tridymite: phase relationships. Am Mineral 69:449–457Google Scholar
  2. Ageeva OA (1999) Typomorphism of accessory lomonosovite from rocks of Khibiny massif. Zap Rus Miner O-va 2:99–104 (in Russian)Google Scholar
  3. Ageeva OA, Borutzky BYe (2004) Kalsilite in rocks of the Khibiny massif: morphology, paragenesis, genetic conditions. New Data Miner 39:40–50Google Scholar
  4. Ageeva OA, Borutzky BYe, Khangulov VV (2002) Eudialyte as a mineralogical and geochemical indicator of metasomatic processes in the formation of poikilitic nepheline syenites of the Khibiny Massif. Geochem Int 40:1098–1105Google Scholar
  5. Arkhangelskaja VV (1965) On the genesis of the pseudoleucite sinnyrites of the Sinnyr massif of the alkaline rocks. Doklady Akademii Nauk SSSR T 164(3):662–665, in RussianGoogle Scholar
  6. Arzamastsev AA, Ivanova TN, Korobeinikov AN (1987) Petrology of the Khibina Ijolite–Urtite series and the distribution of apatite deposits. Nauka, Leningrad, p 110, in RussianGoogle Scholar
  7. Barrer RM, Hinds L (1953) Ion exchange in crystals of analcite and leucite. J Chem Soc (London) 1879–1888Google Scholar
  8. Borutsky BYe, Tsepin AI, Kuznetsov ZhM (1973) Kalsilite from the Khibiny massif of the nepheline syenites. Izvestiya Akademii Nauk SSSR. Ser Geol 5:132–138 (in Russian)Google Scholar
  9. Borutzky BYe (1988) Rock-forming minerals of the high alkaline complexes. Nauka, Moscow, p 212, in RussianGoogle Scholar
  10. Bowen NL, Ellestad (1937) Leucite and pseudoleucite. Am Mineral 22:409–415Google Scholar
  11. Cellai D, Gesing TM, Wruck B, Carpenter MA (1999) X-ray study of the trigonal -> hexagonal phase transition in metamorphic kalsilite. Am Mineral 84:1950–1955Google Scholar
  12. Davidson A (1970) Nepheline-K-feldspar intergrowth from Kaminak Lake, Northwest Territories. Can Mineral 10:191–206Google Scholar
  13. Deer WA, Howie RA, Wise WS, Zussman J (2004) Rock-forming minerals. Volume 4B. Framework silicates: silica minerals, Secondth edn. The Geological Society, London, p 982Google Scholar
  14. Downs RT, Hall-Wallace M (2003) The American mineralogist crystal structure database. Am Mineral 88:247–250Google Scholar
  15. Edgar AD (1978) Subsolidus phase relations in the system NaAlSi2O6-KAlSi2O6 at 1 kb PH2O and their bearing on the origin of pseudoleucites and analcime in igneous rocks. Neues Jahrb Mineral Monatshefte 5:210–222Google Scholar
  16. Engell J, Hansen J, Jensen M, Kunzendorf H, Løvborg L (1971) Beryllium mineralization in the Illimaussaq intrusion, South Greenland. Rapp Grønl Geol Unders 33:1–40Google Scholar
  17. Fudali RF (1963) Experimental studies bearing on the origin of pseudoleucite and associated problems of alkalic rock systems. Geol Soc Am Bull 74:1101–1126CrossRefGoogle Scholar
  18. Galakhov AV (1959) Rischorrites of the Khibiny alkaline massif. Izdanie Akademii Nauk, Leningrad, p 169, in RussianGoogle Scholar
  19. Gittins J, Fawcett JJ, Brooks CK, Rucklidge JC (1980) Intergrowths of nepheline-potassium feldspar and kalsilite-potassium feldspar: a re-examination of the ‘pseudo-leucite problem’. Contrib Mineral Petrol 73:119–126CrossRefGoogle Scholar
  20. Hesselbo SP (1986) Pseudoleucite from the Gardar of South Greenland. Bull Geol Soc Den 35:11–17Google Scholar
  21. Hogarth DD (1997) Bineralogy of leucite-bearing dykes from Napoleon bay Baffin Island: multistage Proterozoic lamproites. Can Mineral 35:53–78Google Scholar
  22. Hussak E (1890) Über Leucitpseudokristalle in Phonolith (Tinguait) der Serra de Tingua, Estado Rio de Janeiro, Brazil. N Jb Mineral 1:166–169Google Scholar
  23. Ivanova TN, Arzamastsev AA (1985) Poikilitic nepheline syenites of the Khibiny massif: geological position, chemical composition and perspectives of the ore content. Petrology and mineralogy of alkaline, alkaline-ultramafic and carbonatite complexes of the Karelia-Kola region. Apatity: Izd. KFAN SSSR 13–21 (in Russian)Google Scholar
  24. Jones A, Palmer D, Islam MS, Mortimer M (2001) Ion migration in nepheline: a dielectric spectroscopy and computer modeling study. Phys Chem Miner 28:28–34CrossRefGoogle Scholar
  25. Jones A, Islam MS, Mortimer M, Palmer D (2004) Alkali ion migration in albite and K-feldspar. Phys Chem Miner 31:313–320CrossRefGoogle Scholar
  26. Kawahara A, Andou Y, Marumo F, Okomo M (1987) The crystal structure of high temperature form of kalsilite (KAlSiO4) at 950 °C. Mineral J 13:260–270CrossRefGoogle Scholar
  27. Khomyakov AP (1995) Mineralogy of hyperagpaitic alkaline rocks. Science Publications, Clarendon Press, Oxford, 223 pGoogle Scholar
  28. Knight CW (1906) A new occurrence of pseudoleucite. Am J Sci 21:286–293CrossRefGoogle Scholar
  29. Kogarko LN, Krigman L, Beliakova EN (1984) Nepheline-diopside-apatite system and evolution of the melts during crystallization of the apatite-bearing ijolite-urtite magma. Geochem 4:472–493 (in Russian)Google Scholar
  30. Kononova VA, Pervov VA, Kovalenko VI, Laputina IP (1982) Pseudoleucite syenines and problems of their consanguinity (as in the Lugingol Massif, Mongolia). Int Geol Rev 24:330–344CrossRefGoogle Scholar
  31. Kononova VA, Pervov VA, Bogatikov OA, Vulli A, Saddebi P (1997) Pseudoleucite and the origin of highly potassic rocks of the southern Sakun Massif, Aldan Shield. Petrologiya 5:188–205Google Scholar
  32. Korzhinskii DS, Zotov IA, Pertsev NN (1987) In: Korzhinskii DS, Perchuk LL, Pertsev NN (eds) Transmagmatic fluids, metamagmatism and ore formation. Regularities of metamagmatism, metasomatism and metamorphism. Nauka, Moscow, pp 5–28, in RussianGoogle Scholar
  33. Kostyliova-Labuntsova EE, Borutzky BYe, Sokolova MN, Shlukova ZV, Dorfman MD, Dudkin OB, Kozyreva LV, Ikorskii SV (1978) Mineralogy of the Khibiny massif. 1. Nauka, Moscow, p 228, in RussianGoogle Scholar
  34. Kurbatov SM (1948) To the problem of genesis of apatite deposit on the Kukisvumchorr Mountain in the Khibiny tundra. Reports on the scientific session of the Kola base of Academy of Science of USSR. Kirovsk (in Russian)Google Scholar
  35. Kuznetsov ZhM (1972) To morphology of poikilitic potassium feldspars of the Jukspor Mountain of the Khibiny massif. Zapisky Vsesouz Miner o-va 5:246–253 (in Russian)Google Scholar
  36. Markl G (2001) Stability of Na–Be minerals in late-magmatic fluids of the Ilımaussaq alkaline complex, South Greenland. Geol Surv Den Greenl Bull 190:145–158Google Scholar
  37. Markl G, Baumgartner L (2002) pH changes in peralkaline late-magmatic fluids. Contrib Mineral Petrol 144:331–346CrossRefGoogle Scholar
  38. Mitchell RH, Platt RG (1979) Nepheline – plagioclase intergrowth of metasomatic origin from the Coldwell complex, Ontario. Can Mineral 17:537–540Google Scholar
  39. Obata M, Ozawa K (2011) Topotaxic relationships between spinel and pyroxene in kelyphite after garnet in mantle-derived peridotites and their implications to reaction mechanism and kinetics. Mineral Petrol 101:217–224CrossRefGoogle Scholar
  40. Odashima N, Morishita T, Ozawa K, Nagahara H, Tsuchiyama A, Nagashima R (2008) Formation and deformation mechanisms of pyroxene–spinel symplectite in an ascending mantle, the Horoman peridotite complex, Japan: an EBSD (electron backscatter diffraction) study. Jpn J Miner Petrol Sci 103:1–15CrossRefGoogle Scholar
  41. Pakhomovsky YaA, Yakovenchuk VN, Ivanyuk GYu (2009) Kalsilite of the Khibiny and Lovozero alkaline plutons, Kola peninsula. Geol Or Dep 51:822–826CrossRefGoogle Scholar
  42. Palmer DC (1994) Stuffed derivatives of the silica polymorphs. Rev Miner Geochem 29:83–122Google Scholar
  43. Perekrest II, Smirnov VV (1985) Geological and structure position of the apatite deposit “Snezhniy Tsirk”. Structure control of ore deposits and magmatic and metamorphic complexes of the Kola peninsula. Apatity: Izd. Kol’sky Filial Akademii Nauk SSSR 13–22 (in Russian)Google Scholar
  44. Plechov PYu, Serebryakov NS (2004) Relics of apoleucite rocks in the rischorrite-complex of the Khibiny massif and their genetic significance. Doklady Rossiyskoy Akademii Nauk 394(5):673–676 (in Russian)Google Scholar
  45. Rao Y, Murthy ISN (1974) Nepheline as a metasomatic product. Am Mineral 59:690–698Google Scholar
  46. Roux J, MacKenzie WS (1978) Sodium in leucite and its petrogenetic significance: an experimental study. Bull Mineral 101:478–484Google Scholar
  47. Rudenko SA (1964) To the genesis of the apatite deposits of the Khibiny massif. Zapisky Leningradskogo Gornogo Instituta. 47. V.2 49–70 (in Russian)Google Scholar
  48. Rudenko SA, Kuznetsov ZhM (1984) Metasomatites of ijolite-urtite and juvite-rischorrite complexes of the Khibiny massif. Metasomatism and ore formation. Nauka, Moscow, pp 76–84, in RussianGoogle Scholar
  49. Schönenberger J, Marks M, Wagner T, Markl G (2006) Fluid-rock interaction in autoliths of agpaitic nepheline syenites in the Ilimaussaq intrusion, South Greenland. Lithos 91:331–351CrossRefGoogle Scholar
  50. Schwartz AJ, Kumar M, Adams BL, Field DP (2009) Electron backscatter diffraction in materials science. Second edn. Springer Verlag, New York, p 403Google Scholar
  51. Seki Y, Kennedy GC (1964) An experimental study on the leucite pseudoleucite problem. Am Mineral 49:1267–1280Google Scholar
  52. Solodovnikova LL (1959) Feldspar of the Kukisvumchorr deposit. To a mineralogy of postmagmatic processes. L Izd LGU 7–72 (in Russian)Google Scholar
  53. Tait KT, Sokolova E, Hawthorne FC, Khomyakov AP (2003) The crystal chemistry of nepheline. Can Mineral 41:61–70CrossRefGoogle Scholar
  54. Taylor D, MacKenzie WS (1975) A contribution to the pseudoleucite problem. Contrib Mineral Petrol 49:32l–333lCrossRefGoogle Scholar
  55. Tikhonenkov IP (1963) Nepheline syenites and pegmatites of the north-eastern part of the Khibiny massif and role of the postmagmatic phenomena in their formation. Izdanie Akademii Nauk SSSR, Moscow, p 246, in RussianGoogle Scholar
  56. Yagi K (1954) Pseudoleucite from Tzu Chin Shan, Shansi, North China. Jpn J Geol Cogra 24:93–100Google Scholar
  57. Zak SI, Kamenev EA, Minakov FV (1972) Khibiny alkaline massif. Nedra, Leningrad, p 170Google Scholar
  58. Zotov IA (1989) Transmagmatic fluids in magmatism and ore formation. Moscow, Nauka, 214 p (in Russian)Google Scholar
  59. Zyryanov VN (1981) Phase correspondence in the systems of feldspars and feldspathoids. Nauka, Moscow, p 220, in RussianGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Olga A. Ageeva
    • 1
  • Rainer Abart
    • 2
  • Gerlinde Habler
    • 2
  • Boris Ye. Borutzky
    • 1
  • Nikolay V. Trubkin
    • 1
  1. 1.Institute of Ore Deposits, Petrography, Mineralogy and Geochemistry of Russian Academy of SciencesMoscowRussia
  2. 2.Department of Lithospheric ResearchUniversity of ViennaViennaAustria

Personalised recommendations