Mineralogy and Petrology

, Volume 105, Issue 3–4, pp 157–169 | Cite as

State of geoscientific research within the lorandite experiment (LOREX)

  • Georg AmthauerEmail author
  • Miodrag K. Pavićević
  • Rade Jelenković
  • Ahmed El Goresy
  • Blažo Boev
  • Predrag Lazić
Original Paper


The LORandite EXperiment (acronym LOREX) is the only geochemical solar neutrino experiment still actively persued. The Tl-mineral lorandite, TlAsS2, occurs in the ore deposit Allchar, Macedonia, close to the border of Greece. The polychronous and polygenetic Sb-As-Tl-Au Allchar deposit was formed by complex physico-chemical processes occurring in a heterogeneous geological environment and by interaction of polyphase hydrothermal fluids with the surrounding magmatic, sedimentary and metamorphic rocks. The genesis of ore mineralization is related to the products of polyphase magmatic activity of Pliocene age (~6.5 to ~1.8 Ma) and its spatial location was controlled by magmatic, structural and lithological factors. The Allchar deposit comprises several orebodies of various shapes, textural-structural characteristics and element associations. Thallium mineralization, which is of significance for the LOREX project, has been proved in two locations: (i) ore body Crven Dol in the northern part and (ii) ore body Centralni Deo in the central part of the Allchar deposit. The age of Tl-mineralization is 4.22 Ma at the Crven Dol locality and 4.31 Ma at Rudina near to the Centralni Deo locality. The present depth of ore mineralization from the present soil surface is about 30 m to 140 m, whereas the paleodepth of its formation is considerably bigger. Using the method of quantitative geomorphological analysis, and AMS- and MS-measurements of cosmogenic radionuclides 26Al, 21Ne, and 3He, the erosion rate has been established to be ~70 m/Ma in the broader area of the Crven Dol locality and ~130 m/Ma in the Centrani Deo of the Allchar deposit. On the basis of these erosion rates and ages of Tl-mineralization, we have calculated the paleo-depth of Lorandite to be ca 180 m ± 35 m to 420 m ± 80 m. Geochemical and mineralogical investigations on lorandite in particular its trace elements (Pb, U, and Th), the quantity of lorandite in the two ore bodies, the geological age and the paleo depth of Tl-mineralization have provided encouraging results and indicate the feasibility of the LOREX project.


Dolomite Pyrite Erosion Rate Solar Neutrino Cosmic Radiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors wish to thank the FWF for supporting LOREX by grant P 20594. M.K.P. is very thankful to the University of Salzburg for its hospitality and financial support.


  1. Beran A, Goetzinger MA, Rieck B (1994) A fluid Inclusion study of realgar from the Allchar deposit, FYR Macedonia. N Jb Miner Abh 167:345–348Google Scholar
  2. Boev B (1988) Mineralogical, petrological and volcanological characteristics of volcanic rocks of Kozuf Mountains. Dissertation, University of St. Cyril and Methodius, Skopje.Google Scholar
  3. Bosch F, Faestermann Th, Friese J, Heine F, Kienle P, Wefers E, Zeitelhack K, Beckert K, Franzke B, Klepper O, Kozhuharov C, Menzel G, Moshammer R, Nolden F, Reich H, Schlitt B, Steck M, Stoehlker T, Winkler T, Takahashi K (1996) Observation of bound-state beta- decay of fully ionized 187Re: 187Re/187Os cosmochronometry. Phys Rev Lett 77:5190–5193CrossRefGoogle Scholar
  4. Cvetković Lj, Boronikhin VA, Pavićević MK, Krajnović D, Grzetić I, Libowitzky GE, Tillmanns G (1995) Jankovicite Tl5Sb9(As, Sb)4 S22, a new Tl-sulfosalt from Allchar, Macedonia. Mineral Petrol 53:125–131CrossRefGoogle Scholar
  5. Frantz E, Palme H, Todt W, El Goresy A, Pavićević MK (1994) Geochemistry of Tl–As minerals and host rocks at Allchar (FYR Macedonia). N Jb Miner Abh 167:359–399Google Scholar
  6. Freedman MS, Stevens CJ, Horwitz EP, Fuchs LH, Lerner JL, Goodman LS, Childs DJ, Hessler J (1976) Solar neutrinos: proposal for a new test. Science 193:1117–1118CrossRefGoogle Scholar
  7. Ivanov T (1986) Allchar the richest ore deposit of Tl in the world. In: Nolte E (ed) GSI-report 86-9, Darmstadt, p 6Google Scholar
  8. Janković S (1960) Allgemeine Charakteristika der Antimonit Erzlagerstätten Jugoslawiens. N Jb Miner Abh 94:506–538Google Scholar
  9. Janković S (1993) Metallogenic features of the Alshar epithermal Sb-As-Tl deposit/The Serbo-Macedonian Metallogenic Province/. N Jb Miner Abh 166:25–41Google Scholar
  10. Janković S, Jelenković R (1994) Thallium mineralization in the Allchar Sb–As–Tl–Au deposit. N Jb Miner Abh 167:283–297Google Scholar
  11. Jelenković R, Pavićević MK (1994) Erosion investigation of Allchar district based on the applied geomorphological and structuro-geological methods. N Jahrb Mineral Abh 167:299–309Google Scholar
  12. Jung M, Bosch F, Beckert K, Eickhoff H, Franzke B, Gruber A, Kienle P, Klepper O, Kozhuharov C, Mann R, Moshammer R, Nolden F, Schaaf U, Soff G, Spaedtke P, Steck M, Stoehlker T, Suemmerer K (1992) First observation of bound-state beta – decay. Phys Rev Lett 69:2164–2167CrossRefGoogle Scholar
  13. Karamata S, Pavićević MK, Korikovkij SK, Boronikhin VA, Amthauer G (1994) Petrology and mineralogy of Neogene volcanic rocks from the Allchar area, the FYR Macedonia. N Jb Miner Abh 167:317–328Google Scholar
  14. Kienle P (1988) Studies of radioactive decays of completely ionized nuclei in a heavy ion storage ring. Nucl Instr Meth A 271:277–279CrossRefGoogle Scholar
  15. Kolios N, Innocenti F, Maneti P, Peccerillo A, Giuliani O (1988) The Pliocene volcanism of the Voras Mts. (Central Macedonia, Greece). Bull Volcanol 1:3–43Google Scholar
  16. Lal D (1991) Cosmic ray labeling of erosion surfaces: In situ nuclide production rates and erosion models. Earth Planet Sci Lett 104:424–439CrossRefGoogle Scholar
  17. Lippolt HJ, Fuhrmann U (1986) K–Ar Age deteminations on volcanics of Alshar Mine, Yugoslavia. In: Nolte E (ed) GSI-report 86-9, Darmstadt, pp 2.Google Scholar
  18. Litvinov YuA, Geissel H, Novikov YuN, Patyk Z, Radon T, Scheidenberger C, Attallah F, Beckert K, Bosch F, Falch M, Franzke B, Hausmann M, Kerscher Th, Klepper O, Kluge H-J, Kozhuharov C, Loebner KEG, Muenzenberg G, Nolden F, Steck M, Wollnik H (2004) Precision experiments with time-resolved Schottky mass spectrometry. Nucl Phys A 734:473–476CrossRefGoogle Scholar
  19. Neubauer F, Pavićević MK, Genser J, Jelenković R, Boev B, Amthauer G (2009) 40Ar/39Ar dating of geological events of the Allchar deposit and its host rock. Geochim Cosmochim Acta 73:13CrossRefGoogle Scholar
  20. Nishiizumi K, Kohl CP, Arnold JR, Dorn R, Klein J, Fink D, Middleton R (1991) Cosmic ray produced 10Be and 26Al in Antartic rocks: exposure and erosion history. Earth Planet Sci Lett 104:440–454CrossRefGoogle Scholar
  21. Nolte E, Pavićević MK (1988) Solar neutrino detection. Proceedings of the international conference on solar neutrino detection with Tl and related topics. Nucl Inst Meth A271:237–342Google Scholar
  22. Nolte E (1986) Proceeding of the workshop on the feasibility of 205Pb detection by geochemical and accelerator mass spectroscopical measurements, Munich 1985, GSI Report 86-9, DarmstadtGoogle Scholar
  23. Palme H, Pavićević MK, Spettel B (1988) Major and trace elements in some minerals from Crven Dol, Allchar. Nucl Inst Meth A271:314–319Google Scholar
  24. Pavićević MK, Cvetković V, Amthauer G, Bieniok A, Boev B, Brandstätter F, Goetzinger M, Jelenković R, Prelević D, Prohaska T (2006) Quartz from Allchar as monitor for cosmogenic 26Al: geochemical and petrogenetic constraints. Mineral Petrol 88:527–550CrossRefGoogle Scholar
  25. Pavićević MK (1988) Lorandite from allchar - a low energy solar neutrino dosimeter. Nucl Inst Meth A271:287–296Google Scholar
  26. Pavićević MK (1994) The “Lorex”- Project, Solar neutrino detection with the mineral lorandite (Progress Report). N Jb Miner Abh 167:205–245Google Scholar
  27. Pavićević MK, Amthauer G (1994) Solar neutrino detection with Tl-205 – The “LOREX” project. Proceedings of the international symposium on solar neutrino detection with Tl-205. 9-12 October 1990, Dubrovnik, Yugoslavia. N Jb Miner Abh 167:125–426, Schweizerbart, StuttgartGoogle Scholar
  28. Pavićević MK, Amthauer G, Niedermann S, Pejović V, Jelenković R, Boev B, Cvetkovic V, Bosch F, Henning WF, Đurčić Ž (2012) An erosion rate study at the Allchar deposit (Macedonia) based on radioactive and stable cosmogenic nuclides (10Be, 26Al, 3He, 21Ne). submitted to Global Planetary Change.Google Scholar
  29. Pavićević MK, El Goresy A (1988) Crven Dol Tl deposit in Allchar: mineralogical investigation, chemical composition of Tl minerals and genetic implicatons. Nucl Inst Meth A271:297–300Google Scholar
  30. Pavićević MK, Wild EM, Amthauer G, Berger M, Boev B, Kutschera W, Priller A, Prohaska T, Stefaffan I (2004) AMS measurements of 26Al in quartz to assess the cosmic ray background for the geochemical solar neutrino experiment LOREX. Nucl Instr Meth B223–224:660–667Google Scholar
  31. Pavićević MK, Bosch F, Amthauer G, Aničin I, Boev B, Brüchle W, Djurčić Z, Faestermann T, Henning WF, Jelenković R, Pejović V (2010) New data for the geochemical determination of the solar pp-neutrino flux by means of lorandite mineral. Nucl Instr Meth A 621:278–285CrossRefGoogle Scholar
  32. Pe-Piper G, Piper DJW (2002) The igneous rocks of Greece. The anatomy of an orogen. Gebrüder Borntraeger, BerlinGoogle Scholar
  33. Percival JC, Radtke AS (1994) Sedimentary-rock-hosted disseminated gold mineralization in the Alsar District, Macedonia. Can Mineral 32:649–665Google Scholar
  34. Percival TJ, (1990) Preliminary geological report on the Alšar district, Macedonia, Yugoslavia.- Int. Rep., Nassan Ltd.- FeNi, 40 p. Rio Tinto Mining and Exploration Company (1990) Internal Report.Google Scholar
  35. Rowley JK, Cleveland BT, Davis Jr R, Hampel W, Kirsten T (1980) The present and past neutrino luminosity of the sun. In: Pepin RO, Eddy JA, Merrill RB (eds) Proceedings of the Conference on Ancient Sun. pp. 45–62Google Scholar
  36. Todt W (1988) Isotope dilution measurements of Pb, U and Th concentrations in lorandite from Allchar. Nucl Inst Meth A271:251–252Google Scholar
  37. Troesch M, Frantz E (1992) 40Ar/39Ar Alter der Tl–As Mine von Crven Dol, Allchar (Macedonia). Eur J Mineral 4:276Google Scholar
  38. Volkov AV, Serafimovski T, Koncheva NT, Tomson IN, Tasev G (2006) The alshar epitermal Au-AS-Sb-Tl deposit southern Macedonia. Geol Ore Deposit 48:205–224Google Scholar
  39. Von Blanckenburg F (2006) The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment. Earth Planet Sci Lett 242:224–239CrossRefGoogle Scholar
  40. Yanev Y, Boev B, Doglioni C, Innocenti F, Manetti P, Pecskay Z, Tonarini S, D’Orazio M (2008) Late Miocene to Pleistocene potassic volcanism in the Republic of Macedonia. Mineral Petrol 94:45–60CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Georg Amthauer
    • 1
    Email author
  • Miodrag K. Pavićević
    • 1
  • Rade Jelenković
    • 2
  • Ahmed El Goresy
    • 3
  • Blažo Boev
    • 4
  • Predrag Lazić
    • 2
  1. 1.Department of Material Research and PhysicsUniversity of SalzburgSalzburgAustria
  2. 2.Faculty of Mining and GeologyUniversity of BelgradeBelgradeSerbia
  3. 3.Universität Bayreuth, Bayerisches GeoinstitutBayreuthGermany
  4. 4.Faculty of Mining and GeologyUniversity of StipStipMacedonia

Personalised recommendations