Mineralogy and Petrology

, Volume 100, Issue 3–4, pp 249–253 | Cite as

The crystal structure of waylandite from Wheal Remfry, Cornwall, United Kingdom

  • Stuart J. Mills
  • Anthony R. Kampf
  • Mati Raudsepp
  • William D. Birch
Original Paper


Sr- and Ca-rich waylandite, \( {\left( {{\hbox{B}}{{\hbox{i}}_{0.{54}}}{\hbox{S}}{{\hbox{r}}_{0.{31}}}{\hbox{C}}{{\hbox{a}}_{0.{25}}}{{\hbox{K}}_{0.0{1}}}{\hbox{B}}{{\hbox{a}}_{0.0{1}}}} \right)_{\Sigma 1.12}}{{\hbox{H}}_{0.{18}}}{\left( {{\hbox{A}}{{\hbox{l}}_{{2}.{96}}}{\hbox{C}}{{\hbox{u}}_{0.0{2}}}} \right)_{\Sigma 2.98}}{\left[ {{{\left( {{{\hbox{P}}_{0.{97}}}{{\hbox{S}}_{0.0{3}}}{\hbox{S}}{{\hbox{i}}_{0.0{1}}}} \right)}_{\Sigma 1.00}}{{\hbox{O}}_4}} \right]_2}{\left( {\hbox{OH}} \right)_6} \), from Wheal Remfry, Cornwall, United Kingdom has been investigated by single-crystal X-ray diffraction and electron microprobe analyses. Waylandite crystallises in space group R \( \overline 3 \)m, with the cell parameters: a = 7.0059(7) Å, c = 16.3431(12) Å and V = 694.69(11) Å3. The crystal structure has been refined to R 1 = 3.76%. Waylandite has an alunite-type structure comprised of a rhombohedral stacking of (001) composite layers of corner-shared AlO6 octahedra and PO4 tetrahedra, with (Bi,Sr,Ca) atoms occupying icosahedrally coordinated sites between the layers.


Jarosite Topaz Alunite Thermal Displacement Parameter Typical Rhombohedral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The Associate Editor, Lutz Nasdala and two anonymous reviewers, provided helpful comments on the manuscript. NSERC Canada is thanked for a Discovery Grant to Mati Raudsepp. Part of this study was funded by the John Jago Trelawney Endowment to the Mineral Sciences Department of the Natural History Museum of Los Angeles County. Steve Rust is thanked for donating the specimen used in this study.


  1. Basciano LC, Peterson RC (2007) The crystal structure of ammoniojarosite, (NH4)Fe3(SO4)2(OH)6 and the crystal chemistry of the ammoniojarosite-hydronium jarosite solid-solution series. Mineral Mag 71:427–441CrossRefGoogle Scholar
  2. Basciano LC, Peterson RC (2008) Crystal chemistry of the natrojarosite-jarosite and natrojarosite-hydronium jarosite solid-solution series: a synthetic study with full Fe site occupancy. Am Mineral 93:853–862CrossRefGoogle Scholar
  3. Bayliss P, Kolitsch U, Nickel E, Pring A (2010) Alunite supergroup: recommended nomenclature approved by CNMNC. Mineral Mag 74Google Scholar
  4. Blount AM (1974) The crystal structure of crandallite. Am Mineral 59:41–47Google Scholar
  5. Brese N, O’Keeffe M (1991) Bond valence parameters for solids. Acta Crystallogr B47:192–197Google Scholar
  6. Bruker (2003) SAINT, SADABS and SHELXTL. Bruker AXS Inc, MadisonGoogle Scholar
  7. Clark AM, Couper AG, Embrey PG, Fejer EE (1986) Waylandite: new data, from an occurrence in Cornwall, with a note on ‘agnesite’. Mineral Mag 50:731–733CrossRefGoogle Scholar
  8. Ferraris G, Ivaldi G (1984) X-OH and O-H...O bond lengths in protonated oxoanions. Acta Crystallogr B40:1–6Google Scholar
  9. Grey IE, Birch WD, Bougerol C, Mills SJ (2006) Unit-cell intergrowth of pyrochlore and hexagonal tungsten bronze structures in secondary tungsten minerals. J Solid State Chem 179:3860–3869CrossRefGoogle Scholar
  10. Grey IE, Mumme WG, Bordet P, Mills SJ (2008) A new crystal-chemical variation of the alunite-type structure in monoclinic PbZn0.5Fe3(AsO4)2(OH)6. Can Mineral 46:1355–1364CrossRefGoogle Scholar
  11. Grey IE, Mumme WG, Mills SJ, Birch WD, Wilson NC (2009) The crystal chemical role of zinc in alunite-type minerals: structure refinements for pure and zincian kintoreite. Am Mineral 94:676–683CrossRefGoogle Scholar
  12. Jambor JL (1999) Nomenclature of the alunite supergroup. Can Mineral 37:1323–1341Google Scholar
  13. Kato T (1990) The crystal structure of florencite. Neues Jb Miner Monatsh 227–231Google Scholar
  14. Kharisun TMR, Bevan DJM, Pring A (1997) The crystal structure of kintoreite, PbFe3(PO4)2(OH, H2O)6. Mineral Mag 61:123–129CrossRefGoogle Scholar
  15. Kolitsch U, Tiekink ERT, Slade PG, Taylor MR, Pring A (1999) Hinsdalite and plumbogummite, their atomic arrangements and disordered lead sites. Eur J Mineral 11:513–520Google Scholar
  16. Libowitzky E, Beran A (2004) IR spectroscopic characterisation of hydrous species in minerals. In: Beran A, Libowitzky E (eds) Spectroscopic methods in mineralogy, vol 6. EMU Notes in Mineralogy, Eötvös University Press, Budapest, pp 227–279.Google Scholar
  17. Madsen IC, Grey IE, Mills SJ (2010) In situ diffraction studies: thermal decomposition of a natural plumbojarosite and the development of Rietveld-based data analysis techniques. Mater Sci Forum 651:37–64CrossRefGoogle Scholar
  18. Mills SJ (2007) The crystal chemistry and geochronology of minerals from Broken Hill. PhD Thesis, University of Melbourne, 249 ppGoogle Scholar
  19. Mills SJ, Grey IE, Mumme WG, Miyawaki R, Matsubara S, Bordet P, Birch WD, Raudsepp M (2008) Kolitschite, Pb[Zn0.5,□0.5]Fe3(AsO4)2(OH)6, a new mineral from the Kintore opencut, Broken Hill, New South Wales. Aust J Mineral 14:15–19Google Scholar
  20. Mills SJ, Hatert F, Nickel EH, Ferraris G (2009a) The standardisation of mineral group hierarchies: application to recent nomenclature proposals. Eur J Mineral 21:1073–1080CrossRefGoogle Scholar
  21. Mills SJ, Kampf AR, Raudsepp M, Christy AG (2009b) The crystal structure of Ga-rich plumbogummite from Tsumeb, Namibia. Mineral Mag 73:837–845CrossRefGoogle Scholar
  22. Mills SJ, Madsen IC, Grey IE, Birch WD (2009c) In situ XRD study of the thermal decomposition of natural arsenian plumbojarosite. Can Mineral 47:683–696CrossRefGoogle Scholar
  23. Mills SJ, Kartashov PM, Kampf AR, Raudsepp M (2010) Arsenoflorencite-(La), a new mineral from the Komi Republic, Russian Federation: description and crystal structure. Eur J Mineral 22:613–621Google Scholar
  24. Sato E, Nakai I, Miyawaki R, Matsubara S (2009) Crystal structures of alunite family minerals: beaverite, corkite, alunite, natroalunite, jarosite, svanbergite, and woodhouseite. Neues Jb Miner Abh 185:313–322CrossRefGoogle Scholar
  25. Scharm B, Scharmová M, Kundrát M (1994) Crandalite group minerals in the uranium ore district of Northern Bohemia (Czech Republic). Vestník Ceského geol. Ústava 69:79–85Google Scholar
  26. Scott KM (1987) Solid solution in, and classification of, gossan-derived members of the alunite-jarosite family, northwest Queensland, Australia. Am Mineral 72:178–187Google Scholar
  27. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A64:112–122Google Scholar
  28. Tindle AG (2008) Minerals of Britain and Ireland. Terra Publishing, Hemel Hempstead, Hertfordshire, 624Google Scholar
  29. Von Knorring O, Mrose ME (1963) Westgrenite [= bismutomicrolite] and waylandite, two new bismuth minerals from Uganda. Geol Soc Amer Spec Paper 73:256AGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Stuart J. Mills
    • 1
    • 2
  • Anthony R. Kampf
    • 3
  • Mati Raudsepp
    • 1
  • William D. Birch
    • 2
  1. 1.Department of Earth and Ocean SciencesUniversity of British ColumbiaVancouverCanada
  2. 2.GeosciencesMuseum VictoriaMelbourneAustralia
  3. 3.Mineral Sciences DepartmentNatural History Museum of Los Angeles CountyLos AngelesUSA

Personalised recommendations