Mineralogy and Petrology

, Volume 99, Issue 3–4, pp 185–199 | Cite as

Geochemistry of the Drahotín and Mutěnín intrusions, West Bohemian shear zone, Bohemian massif: contrasting evolution of mantle-derived melts

  • Lukáš Ackerman
  • Martina Krňanská
  • Wolfgang Siebel
  • Ladislav Strnad
Original Paper


In western Bohemia, the Drahotín (gabbro-diorite) and Mutěnín (gabbronorite-diorite-syenite) intrusions show different origins and patterns of geochemical evolution. Parental magmas of the Drahotín intrusion were derived predominantly from enriched mantle sources, and the melts have undergone a significant degree of assimilation-fractional crystallization (AFC) during their ascent and/or emplacement into the crust. In contrast, the compositional variation of the complex Mutěnín intrusion cannot be explained by simple AFC processes, but more likely reflects the involvement of several parental magmas. The gabbronorite was derived from a depleted mantle source, whereas the diorite/syenite stem from a mixed mantle-crust reservoir. The contrasting evolution of the Drahotín and Mutěnín intrusions may be due to their melt derivation and magma emplacement under different tectonothermal regimes at different times.


Olivine Fractional Crystallization Parent Magma Alkaline Rock Flame Atomic Absorption Spectrometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are greatly indebted to Zdeněk Vejnar for the help in the field, Jana Rajlichová for technical assistance, Gordon Medaris for grammatical corrections and Elmar Reitter for Rb-Sr and Sm-Nd isotope analyses. This research was supported by the Grant Agency of the Academy of Sciences, project No. KJB300130612, the Scientific Programme CEZ: AV0Z30130516 of the Institute of Geology, Acad. Sci. CR and the Scientific Programme of Ministry of Education: MSM0021620855.


  1. Adam J, Green T (2006) Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behavior. Contrib Mineral Petrol 152:1–17CrossRefGoogle Scholar
  2. Aignertorres M, Blundy J, Ulmer P, Pettke T (2007) Laser Ablation ICPMS study of trace element partitioning between plagioclase and basaltic melts: an experimental approach. Contrib Mineral Petrol 153:647–667CrossRefGoogle Scholar
  3. Allègre CJ, Treuil M, Minster JF, Minster JB, Albarede F (1977) Systematic use of trace element in igneous process. Part I: fractional crystallization processes in volcanic suites. Contrib Mineral Petrol 60:57–75CrossRefGoogle Scholar
  4. Bindeman IN, Davis AM, Drake MJ (1998) Ion microprobe study of plagioclase-basalt partition experiments at natural concentration levels of trace elements. Geochim Cosmochim Acta 62:1175–1193CrossRefGoogle Scholar
  5. Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 63–114Google Scholar
  6. Bues C, Dörr W, Fiala J, Vejnar Z, Zulauf G (2002) Emplacement depths and radiometric ages of Paleozoic plutons of the Neukirchen-Kdyně massif: differential uplift and exhumation of Cadomian basement due to Carboniferous orogenic collapse (Bohemian Massif). Tectonophysics 352:225–243CrossRefGoogle Scholar
  7. Cháb J, Straník Z, Eliáš M (2007) Geologická mapa České Republiky 1:500 000. ČGS, PrahaGoogle Scholar
  8. DePaolo DJ (1981) Trace element and isotopic effects of combined wall-rock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202CrossRefGoogle Scholar
  9. Dörr W, Zulauf G (2009) Elevator tectonics and orogenic collapse of a Tibetean-style plateau in the European Variscides: the role of the Bohemian shear zone. Int J Earth Sci, in printGoogle Scholar
  10. Dörr W, Zulauf G, Schastok J, Scheuvens D, Vejnar Z, Wemmer K, Ahrendt H (1996) The Teplá—Barrandian/Moldanubian s.str. boundary: preliminary geochronological results from fault related plutons. Terra Nostra 2:34–38Google Scholar
  11. Dörr W, Zulauf G, Fiala J, Schastok J, Scheuvens D, Wulf S, Vejnar Z, Ahrendt H, Wemmer K (1997) Dating of collapse related plutons along the West- and Central Bohemian shear zone (European Variscides). Terra Nostra 5:31–34Google Scholar
  12. Dörr W, Zulauf G, Fiala J, Franke W, Vejnar Z (2002) Neoproterozoic to Early Cambrian history of an active plate margin in the Teplá—Barrandian unit (Bohemia, Czech Republic). Tectonophysics 352:65–85CrossRefGoogle Scholar
  13. Dulski P (2001) Reference Materials for Geochemical Studies: New Analytical Data by ICP-MS and Critical Discussion of Reference Values. Geostand Newslett J Geostand Geoanal 25:87–125CrossRefGoogle Scholar
  14. Fiala J, Fuchs G, Wendt JI (1995) Stratigraphy (Moldanubian region: Moldanubian zone). In: Dallmeyer RD, Franke W, Weber K (eds) Pre-permian geology of Central and Eastern Europe. Springer, Berlin Heidelberg New York, pp 417–428Google Scholar
  15. Franke W (1989) Variscan plate tectonics in Central Europe—current ideas and open questions. Tectonophysics 169:221–228CrossRefGoogle Scholar
  16. Gerdes A, Finger F, Parrish RR (2006) Southwestward progression of a late-orogenic heat front in the Moldanubian zone of the Bohemian Massif and formation of the Austro-Bavarian anatexite belt. Geophys Res Abstr 8:10698Google Scholar
  17. Holub F, Cocherie A, Rossi P (1997) Radiometric dating of granitic rocks from the Central Bohemian Plutonic Complex (Czech Republic): constraints on the chronology of thermal and tectonic events along the Moldanubian-Barrandian boundary: C R Académie des Sciences Paris, Sciences de la terre et des planetes. Earth Planet Sci 325:19–26Google Scholar
  18. Janoušek V, Rogers G, Bowes DR (1995) Sr-Nd isotopic constraints on the petrogenesis of the Central Bohemian Pluton, Czech Republic. Geol Rundsch 84:520–534CrossRefGoogle Scholar
  19. Janoušek V, Farrow CM, Erban V (2006) Interpretation of whole-rock geochemical data in igneous geochemistry: Introducing geochemical data toolkit (GCDkit). J Petrol 47:1255–1259CrossRefGoogle Scholar
  20. Kalt A, Berger A, Blümel P (1999) Metamorphic evolution of cordierite-bearing migmatites of the Bayerische Wald (Variscan Belt, Germany). J Petrol 40:601–627CrossRefGoogle Scholar
  21. Kalt A, Corfu F, Wijbrans JR (2000) Time calibration of a P-T path from a Variscan high-temperature low-pressure metamorphic complex (Bayerische Wald, Germany), and the detection of inherited monazite. Contrib Mineral Petrol 138:143–163CrossRefGoogle Scholar
  22. Kreuzer H, Müller P, Okrusch M, Patzak M, Schüssler U, Seidel E, Šmejkal V, Vejnar Z (1990) Ar–Ar Confirmation for Cambrian, Early Devonian, and Mid-Carboniferous tectonic units at the Western Margin of the Bohemian Massif. Zbl Geol Palaeontol I 1991:1332–1335Google Scholar
  23. Kreuzer H, Vejnar Z, Schüssler U, Okrusch M, Seidel E (1992) K–Ar Dating in the Teplá-Domažlice Zone at the Western Margin of the Bohemian Massif. Proc 1st Int Conf Bohemian Massif, pp 168–175Google Scholar
  24. Liew TC, Hofmann AW (1988) Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of central Europe: indications from a Nd and Sr isotopic study. Contrib Mineral Petrol 98:129–138CrossRefGoogle Scholar
  25. Matte P, Maluski H, Rajlich P, Franke W (1990) Terrane boundaries in the Bohemian Massif: results of large-scale Variscan shearing. Tectonophysics 177:151–170CrossRefGoogle Scholar
  26. McDonough WF, Sun S (1995) The composition of the Earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  27. McKenzie D, O’Nions RK (1991) Partial melt distributions from inversion of rare Earth element concentrations. J Petrol 32:1021–1091Google Scholar
  28. Middlemost EAK (1994) Naming materials in magma/igneous rock system. Earth Sci Rev 37:215–224CrossRefGoogle Scholar
  29. Miethig A (1995) Sr- und Nd-Isotopensystematik an den Gesteinen der Gabbroamphibolitmasse von Neukirchen b. Hl. Blut-Kdyně. Dissertation, Univ. MünchenGoogle Scholar
  30. O’Brien P (2000) Fundamental Variscan problem: high temperature metamorphism at different depths and high pressure metamorphism at different temperatures. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt, vol 179. Geol Soc Spec Publ, pp 369–386Google Scholar
  31. Pitra P, Burg JP, Guiraud M (1999) Late Variscan strike-slip tectonics between Teplá-Barrandian and Moldanubian terranes (Czech Bohemian Massif): petrostructural evidence. J Geol Soc 156:1003–1020CrossRefGoogle Scholar
  32. Propach G, Pfeiffer T (1998) Ocean floor basalt, not continental gabbro: a reinterpretation of the Hoher Bogen amphibolites, Teplá-Barrandian, Bohemian massif. Geol Rundsch 87:303–313CrossRefGoogle Scholar
  33. Propach G, Baumann A, Schulz-Schmalschläger M, Grauert B (2000) Zircon and monazite U–Pb ages of Variscan granitoid rocks and gneisses in the Moldanubian zone of eastern Bavaria, Germany. Neues Jahrb Geol Palaontol Monatsh 2000:345–377Google Scholar
  34. Rudnick RL, Gao S (2003) Composition of continental crust. In: Rudnick RL (ed) Treatise in geochemistry, Volume 3—The Crust, Elsevier Pergamon, pp 1–64Google Scholar
  35. Schulmann K, Schaltegger U, Ježek J, Thompson AB, Edel JB (2002) Rapid burial and exhumation during orogeny: Thickening and synconvergent exhumation of thermally weakened and thinned crust (Variscan orogen in Western Europe). Am J Sci 302:856–879CrossRefGoogle Scholar
  36. Strnad L, Mihaljevič M (2005) Sedimentary provenance of Mid-Devonian clastic sediments in the Teplá-Barrandian Unit (Bohemian Massif)—U-Pb and Pb-Pb geochronology of detrital zircons by laser ablation ICPMS. Mineral Petrol 84:47–68CrossRefGoogle Scholar
  37. Strnad L, Mihaljevič M, Šebek O (2005) Laser ablation and solution ICP-MS determination of rare earth elements in USGS BIR-1G, BHVO-2G and BCR-2G glass reference material. Geostand Geoanal Res 29:303–314CrossRefGoogle Scholar
  38. Svobodová J (1999) Původ a vmístění Kdyňského masivu. Ph.D. Thesis, Faculty of Science, Charles UniversityGoogle Scholar
  39. Teipel U, Eichhorn R, Loth G, Rohrmüller J, Höll R, Kennedy A (2004) U–Pb SHRIMP and Nd isotopic data from the western Bohemian Massif, Bayerischer Wald, Germany implications for Upper Vendian and Lower Ordovician magmatism. Int J Earth Sci 93:782–801CrossRefGoogle Scholar
  40. Tonika J (1979) The Mutěnín ferrodiorite ring intrusion, West Bohemia. Krystalinikum 14:195–208Google Scholar
  41. Vejnar Z (1975) Highly ferrous silicates from the Mutěnin ferrodiorite ring intrusion, West Bohemia. Věst Ústř Úst Geol 50:265–273Google Scholar
  42. Vejnar Z (1980) The spinel- and corundum-bearing basic intrusion of Drahotín, South-west Bohemia. Krystalinikum 15:33–54Google Scholar
  43. Vejnar Z (1984) Magmatismus. In: Vejnar Z, Doležal J, Hazdrová M, Kříž J, Mrňa F, Pokorný L, Rudolsý J, Šefrna L, Tásler R, Tomášek M, Volšan V (eds) Geologie domažlické oblasti. Úst Úst Geol, Prague, pp 48–83Google Scholar
  44. Vrána S, Blümel P, Petrakakis K (1995) Metamorphic evolution (Moldanubian region: Moldanubian zone). In: Dallmeyer RD, Franke W, Weber K (eds) Pre-permian geology of Central and Eastern Europe. Springer, Berlin Heidelberg New York, pp 403–410Google Scholar
  45. Wilson SA (1997) The collection, preparation, and testing of USGS reference material BCR-2, Columbia River, Basalt, U.S. Geological Survey Open-File Report 98-xxx.Google Scholar
  46. Zulauf G (1994) Ductile normal faulting along the West Bohemian Shear Zone (Moldanubian/Tepla—Barrandian boundary): evidence for late Variscan extensional collapse in the Variscan Internides. Geol Rundsch 83:276–292Google Scholar
  47. Zulauf G, Dörr W, Fiala J, Vejnar Z (1997) Late Cadomian crustal tilting and Cambrian transtension in the Teplá—Barrandian unit (Bohemian Massif, Central European Variscides). Geol Rundsch 86:571–584CrossRefGoogle Scholar
  48. Zulauf G, Bues W, Dörr W, Vejnar Z (2002) 10 km Minimum throw along the West Bohemian shear zone: Evidence for dramatic crustal thickening and high topography in the Bohemian Massif (European Variscides). Int J Earth Sci 91:850–860CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Lukáš Ackerman
    • 1
    • 2
  • Martina Krňanská
    • 3
  • Wolfgang Siebel
    • 4
  • Ladislav Strnad
    • 5
  1. 1.Institute of Geology v.v.i.Academy of Sciences of the Czech RepublicPraha 6Czech Republic
  2. 2.Czech Geological SurveyGeologická 6Praha 5Czech Republic
  3. 3.Faculty of Science, Institute of Geochemistry, Mineralogy and Mineral ResourcesCharles UniversityPraha 2Czech Republic
  4. 4.Institute of GeosciencesEberhard-Karls-University TübingenTübingenGermany
  5. 5.Faculty of Science, Laboratories of the Geological InstitutesCharles UniversityPraha 2Czech Republic

Personalised recommendations