Mineralogy and Petrology

, Volume 99, Issue 1–2, pp 105–111 | Cite as

OH point defects in olivine from Pakistan

  • Jürgen GoseEmail author
  • Esther Schmädicke
  • Margit Markowitz
  • Anton Beran
Original Paper


The infrared (IR) spectra of gem-quality olivine crystals from Pakistan, formed in serpentinised dunitic rocks, are characterised by strongly pleochroic absorption bands at 3,613, 3,597, 3,580 and 3,566 cm−1. These bands are assigned to O-H stretching vibrations of OH point defects corresponding to H2O concentrations of about 35 wt ppm. Unlike other olivine spectra, the dominating bands are strongly polarised parallel to the b-axis. The unusual spectra type, excludes the presence of planar defects. This finding is supported by transmission electron microscopy. The 3,613 cm−1 band is related to vacant Si sites, the slightly lower energetic bands preferentially to vacant M2 sites. The exclusive presence of these bands is not only a characteristic feature of olivines treated under high P,T conditions equivalent to mantle environment, the presence of these bands in untreated natural olivine also indicates formation conditions equivalent to crustal rocks.


Olivine Mantle Olivine Dipole Direction Natural Olivine Forsterite Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Thanks are due to A. Wagner for careful sample preparation and to B. Rieck for kindly providing sample material. We wish to thank G. Giester for carrying out the X-ray orientation of the samples. We are indebted to R. Wirth who kindly confirmed the absence of planar defects and other inclusions by TEM. We thank J. Mosenfelder and an anonymous reviewer for their helpful suggestions to improve our manuscript and L. Nasdala for editorial handling.


  1. Bai Q, Kohlstedt DL (1993) Effects of chemical environment on the solubility and incorporation mechanism for hydrogen in olivine. Phys Chem Miner 19:460–471CrossRefGoogle Scholar
  2. Balan E, Refson K, Blanchard M, Delattre S, Lazzeri M, Ingrin J, Mauri F, Wright K, Winkler B (2008) Theoretical infrared absorption coefficient of OH groups in minerals. Am Mineral 93:950–953CrossRefGoogle Scholar
  3. Bell DR, Rossman GR (1992) Water in Earth’s mantle: the role of nominally anhydrous Minerals. Science 255:1391–1397CrossRefGoogle Scholar
  4. Bell DR, Rossman GR, Maldener J, Endisch D, Rauch F (2003) Hydroxide in olivine: a quantitative determination of the absolute amount and calibration of the IR spectrum. J Geophys Res 108(B2):2105–2113CrossRefGoogle Scholar
  5. Beran A (1969) Über (OH)-Gruppen in Olivin. Österr Akad Wiss, math-naturwiss Kl, Anzeiger 1969:73–74Google Scholar
  6. Beran A, Libowitzky E (2006) Water in natural mantle minerals II: Olivine, garnet and accessory minerals. In: Keppler H, Smyth JR (eds) Water in nominally anhydrous minerals. Rev Mineral Geochem 62, pp 169–191Google Scholar
  7. Beran A, Putnis A (1983) A model of the OH positions in olivine, derived from infrared-spectroscopic investigations. Phys Chem Miner 9:57–60CrossRefGoogle Scholar
  8. Beran A, Langer K, Andrut M (1993) Single crystal infrared spectra in the range of OH fundamentals of paragenetic garnet, omphacite and kyanite in an eclogitic mantle xenolith. Mineral Petrol 48:257–268CrossRefGoogle Scholar
  9. Berry AJ, Hermann J, O’Neill HSC, Foran GJ (2005) Fingerprinting the water site in mantle olivine. Geology 33:869–872CrossRefGoogle Scholar
  10. Bolfan-Casanova N (2005) Water in the Earth’s mantle. Mineral Mag 69:229–257CrossRefGoogle Scholar
  11. Demouchy S, Mackwell S (2006) Mechanisms of hydrogen incorporation and diffusion in iron-bearing olivine. Phys Chem Miner 33:347–355CrossRefGoogle Scholar
  12. Gose J, Reichart P, Dollinger G, Schmädicke E (2008) Water in natural olivine—determined by proton-proton scattering analysis. Am Mineral 93:1613–1619CrossRefGoogle Scholar
  13. Grant KJ, Brooker RA, Kohn SC, Wood BJ (2007) The effect of oxygen fugacity on hydroxyl concentrations and speciation in olivine: implications for water solubility in the upper mantle. Earth Planet Sci Lett 261:217–229CrossRefGoogle Scholar
  14. Kent AJR, Rossman GR (2002) Hydrogen, lithium, and boron in mantle-derived olivine: the role of coupled substitutions. Am Mineral 87:1432–1436Google Scholar
  15. Keppler H, Bolfan-Casanova N (2006) Thermodynamics of water solubility and partitioning. In: Keppler H, Smyth JR (eds) Water in nominally anhydrous minerals. Rev Mineral Geochem 62, pp 193–230Google Scholar
  16. Khisina NR, Wirth R, Andrut M, Ukhanov AV (2001) Extrinsic and intrinsic mode of hydrogen occurrence in natural olivines: FTIR and TEM investigation. Phys Chem Miner 28:291–301CrossRefGoogle Scholar
  17. Khisina N, Wirth R, Matsyuk S, Koch-Müller M (2008) Microstructures and OH-bearing nano-inclusions in “wet“ olivine xenocrysts from the Udachnaya kimberlite. Eur J Mineral 20:1067–1078CrossRefGoogle Scholar
  18. Kitamura M, Kondoh S, Morimoto N, Miller GH, Rossman GR, Putnis A (1987) Planar OH-bearing defects in mantle olivine. Nature 328:143–145CrossRefGoogle Scholar
  19. Koch-Müller M, Matsyuk SS, Rhede D, Wirth R, Khisina N (2006) Hydroxyl in mantle olivine xenocrysts from the Udachnaya kimberlite pipe. Phys Chem Miner 33:276–287CrossRefGoogle Scholar
  20. Kohlstedt DL, Keppler H, Rubie DC (1996) Solubility of water in the α, β and γ phases of (Mg, Fe)2SiO4. Contrib Mineral Petrol 123:345–357CrossRefGoogle Scholar
  21. Kovacs I, Hermann J, O’Neill HSC, Fitz Gerald J, Sambridge M, Horvath G (2008) Quantitative absorbance spectroscopy with polarized light: part II. Experimental evaluation and development of a protocol for quantitative analysis of mineral IR spectra. Am Mineral 93:765–778CrossRefGoogle Scholar
  22. Lemaire C, Kohn SC, Brooker RA (2004) The effect of silica activity on the incorporation mechanisms of water in synthetic forsterite: a polarised infrared spectroscopic study. Contrib Mineral Petrol 147:48–57CrossRefGoogle Scholar
  23. Libowitzky E (1999) Correlation of O-H stretching frequencies and O-H…O hydrogen bond lengths in minerals. Mh Chem 130:1047–1059Google Scholar
  24. Libowitzky E, Beran A (1995) OH defects in forsterite. Phys Chem Miner 22:387–392CrossRefGoogle Scholar
  25. Libowitzky E, Rossman GR (1997) An IR absorption calibration for water in minerals. Am Mineral 82:1111–1115Google Scholar
  26. Libowitzky E, Beran A (2004) IR spectroscopic characterisation of hydrous species in minerals. In: Beran A, Libowitzky E (eds) Spectroscopic methods in mineralogy. EMU Notes Mineral 6, pp 227–279Google Scholar
  27. Liu Z, Lager GA, Hemley RJ, Ross NL (2003) Synchrotron infrared spectroscopy of OH-chondrodite and OH-clinohumite at high pressure. Am Mineral 88:1412–1415Google Scholar
  28. Matsyuk SS, Langer K (2004) Hydroxyl in olivines from mantle xenoliths in kimberlites of the Siberian platform. Contrib Mineral Petrol 147:413–437CrossRefGoogle Scholar
  29. Matveev S, O’Neill HSC, Ballhaus C, Taylor WR, Green DH (2001) Effect of silica activity on OH IR spectra of olivine: implication for low-α-SiO2 mantle metasomatism. J Petrol 42:721–729CrossRefGoogle Scholar
  30. Matveev S, Portnyagin M, Ballhaus C, Brooker R, Geiger CA (2005) FTIR spectrum of phenocryst olivine as an indicator of silica saturation in magmas. J Petrol 46:603–614CrossRefGoogle Scholar
  31. Miller GH, Rossman GR, Harlow GE (1987) The natural occurrence of hydroxide in olivine. Phys Chem Miner 14:461–472CrossRefGoogle Scholar
  32. Mosenfelder JL, Deligne NI, Asimow PD, Rossman GR (2006) Hydrogen incorporation in olivine from 2–12 GPa. Am Mineral 91:285–294CrossRefGoogle Scholar
  33. Nishihara Y, Shinmei T, Karato S-I (2008) Effect of chemical environment on the hydrogen-related defect chemistry in wadsleyite. Am Mineral 93:831–843CrossRefGoogle Scholar
  34. Parry SA, Pawley AR, Jones RL, Clark SM (2007) An infrared spectroscopic study of the OH stretching frequencies of talc and 10-Å phase to 10 GPa. Am Mineral 92:525–531CrossRefGoogle Scholar
  35. Reichart P, Dollinger G, Bergmaier A, Datzmann G, Hauptner A, Körner H-J, Krücken R (2004) 3D hydrogen microscopy with sub-ppm detection limit. Nucl Instrum Methods Phys Res B219–220:980–987Google Scholar
  36. Sommer H, Regenauer-Lieb K, Gasharova B, Siret D (2008) Grain boundaries: a possible water reservoir in the Earth’s mantle? Mineral Petrol 94:1–8CrossRefGoogle Scholar
  37. Sykes D, Rossman GR, Veblen DR, Grew ES (1994) Enhanced H and F incorporation in borian olivine. Am Mineral 79:904–908Google Scholar
  38. Wirth R (2004) A novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy. Eur J Mineral 16:863–876CrossRefGoogle Scholar
  39. Wirth R (2009) Focused Ion Beam (FIB) combined with SEM and TEM: advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale. Chem Geol 261:217–229CrossRefGoogle Scholar
  40. Young TE, Green HW II, Hofmeister AM, Walker D (1993) Infrared spectroscopic investigation of hydroxyl in β-(Mg, Fe)2SiO4 and coexisting olivine: implications for mantle evolution and dynamics. Phys Chem Miner 19:409–422CrossRefGoogle Scholar
  41. Zhao Y-H, Ginsberg SB, Kohlstedt DL (2004) Solubility of hydrogen in olivine: dependence on temperature and iron content. Contrib Mineral Petrol 147:155–161CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Jürgen Gose
    • 1
    Email author
  • Esther Schmädicke
    • 1
  • Margit Markowitz
    • 2
  • Anton Beran
    • 2
  1. 1.Geozentrum NordbayernUniversität Erlangen-NürnbergErlangenGermany
  2. 2.Institut für Mineralogie und KristallographieUniversität Wien-GeozentrumWienAustria

Personalised recommendations