Mineralogy and Petrology

, Volume 98, Issue 1–4, pp 143–165 | Cite as

Lavas and their mantle xenoliths from intracratonic Eastern Paraguay (South America Platform) and Andean Domain, NW-Argentina: a comparative review

  • P. Comin-ChiaramontiEmail author
  • F. Lucassen
  • V. A. V. Girardi
  • A. De Min
  • C. B. Gomes
Original Paper


Protogranular spinel-peridotite mantle xenoliths and their host sodic alkaline lavas of Cretaceous to Paleogene age occur at the same latitude ≈26°S in central eastern Paraguay and Andes. Na- alkaline lavas from both regions display similar geochemical features, differing mainly by higher Rb content of the Paraguayan samples. Sr, Nd, and Pb isotope ratios are also similar with predominant trends from depleted to enriched mantle components. The mantle xenoliths are divided into two main suites, i.e. relatively low in potassium and incompatible elements, and high in potassium and incompatible elements. The suite high in potassium occurs only in Paraguay. Compositions of both suites range from lherzolite to dunite indicating variable “melt extraction”. Clinopyroxenes from the xenoliths display variable trace element enrichment/depletion patterns compared with the pattern of average primitive mantle. Enrichment in LREE and Sr coupled with depletion of Nb, Ti and Zr in xenoliths from both areas are attributed to asthenospheric metasomatic fluids affecting the lithospheric mantle. Metasomatism is apparent in the sieve textures and glassy drops in clinopyroxenes, by glassy patches with associated primary carbonates in Paraguayan xenoliths. Trace element geochemistry and thermobarometric data indicate lack of interaction between xenoliths and host lavas, due to their rapid ascent. Sr and Nd isotope signatures of the Andean and Paraguayan xenoliths and host volcanic rocks plot mainly into the field of depleted mantle and show some compositional overlap. The Andean samples indicate a generally slightly more depleted mantle lithosphere. Pb isotope signatures in xenoliths and host volcanic rocks indicate the existence of a radiogenic Pb source (high U/Pb component in the source) in both areas. In spite of the distinct tectonic settings, generally compressive in the Central Andes (but extensional in a back-arc environment), and extensional in Eastern Paraguay (rifting environment in an intercratonic area), lavas and host xenoliths from both regions are similar in terms of geochemical and isotopic characteristics.


Olivine Lithospheric Mantle Incompatible Element Mantle Xenolith Primitive Mantle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The Brazilian Agencies “Fundação de Amparo e Pesquisa do Estado de São Paulo”(FAPESP) and “Conslho Nacional de Pesquisa” (CNPq) financed the research carried out in Paraguay. The work in Andes was supported by the DeutscheForschungsgemeinschaft (DFG, German Research Foundation) within the Sonderforschungsbereich (SFB) 267, Deformation Processes in the Andes. The paper benefitted from the invaluable criticism of G. Rivalenti and R. Omarini. The authors acknowledge H. H. G. J. Ulbrich for revising the manuscript.


  1. Barbieri MA, Rivalenti G, Cingolani C, Mazzucchelli M, Zanetti A (1997) Geochemical and isotope variability of the northern and southern Patagonia lithospheric mantle (Argentina). Proceedings of South America Symposiumon Isotope Geology, Campos do Jordão, São Paulo, Brazil, Extended Abstract: 41–43Google Scholar
  2. Bonatti E, Michael J (1989) Mantle peridotites from continental rifts to ocean basins to subduction zones. Earth Plan Sci Lett 91:297–311CrossRefGoogle Scholar
  3. Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare Earth Element geochemistry. Elsevier, Amsterdam, pp 63–114Google Scholar
  4. Brey GP, Köhler T, Nickel KG (1990) Geothermobarometry in four-phase Lherzolites I. Experimental results from 10 to 60 kb. J Petrol 31:1313–1352Google Scholar
  5. Bristow JF (1984) Nephelinites of the North Lebombo and South East Zimbawe. Spec Publ Geol Soc South Africa 13:87–104Google Scholar
  6. Chaffey DJ, Cliff RA, Wilson BM (1989) Characterization of the St Helena magma source. In: Sunders D & Norry MS (eds) Magmatism in the Ocean basin. Geol. Society, Special Paper 42: 257–276.Google Scholar
  7. Chiba H, Chack T, Clayton RN, Goldsmith J (1989) Oxygen isotope fractionations involving diopside, forsterite, magnetite, and calcite: Application to geothermometry. Geochim Cosmochim Acta 53:2985–2995CrossRefGoogle Scholar
  8. Comin-Chiaramonti P, Gomes CB (1996) Alkaline Magmatism in Central-Eastern Paraguay. Relationships with coeval magmatism in Brazil. Edusp/Fapesp, São Paulo, Brazil, p 464Google Scholar
  9. Comin-Chiaramonti P, Gomes CB (2005) Mesozoic to Cenozoic alkaline magmatism in the Brazilian Platform. Edusp/Fapesp, São Paulo, Brazil, p 752Google Scholar
  10. Comin-Chiaramonti P, Demarchi G, Girardi VAV, Princivalle F, Sinigoi S (1986) Evidence of mantle metasomatism and heterogeneity from peridotite inclusions of northeastern Brazil and Paraguay. Earth Plan Sci Lett 77:203–217CrossRefGoogle Scholar
  11. Comin-Chiaramonti P, Civetta L, Petrini R, Piccirillo EM, Bellieni G, Censi P, Bitschene P, DeMarchi G, De Min A, Gomes CB, Castillo AMC, Velázquez JC (1991) Cenozoic nephelinitic magmatism in Eastern Paraguay: petrology, Sr-Nd isotopes and genetic relationships with associated spinel-peridotite xenoliths. Europ J Mineral 3:507–525Google Scholar
  12. Comin-Chiaramonti P, Cundari A, Piccirillo EM, Gomes CB, Castorina F, Censi P, De Min A, Marzoli A, Speziale S, Velázquez VF (1997) Potassic and sodic igneous rocks from Eastern Paraguay: their origin from the lithospheric mantle and genetic relationships with the associated Paraná flood tholeiites. J Petrol 38:495–528CrossRefGoogle Scholar
  13. Comin-Chiaramonti P, Princivalle F, Girardi VAA, Gomes CB, Laurora A, Zanetti F (2001) Mantle xenoliths from Ñemby, Eastern Paraguay: O-Sr-Nd isotopes, trace elements and crystal chemistry of hosted clinopyroxenes. Periodico di Mineralogia 70:205–230Google Scholar
  14. Comin-Chiaramonti P, Marzoli A, Gomes CB et al (2007) Origin of Post-Paleozoic magmatism in Eastern Paraguay. In: RG Foulger and DM Jurdy (eds) The origin of melting anomalies. Geological Society of America, Special Paper 430, pp. 603–633Google Scholar
  15. Dalla Salda LH, Francese JR, Posadas VG (1992) The 1800 Ma mylonite-anatectic granitoid association in Tandilia, Argentina. Basement Tec 7:161–174Google Scholar
  16. De La Roche H (1986) Classification et nomenclature des roches ignées: un essai de restauration de la convergence entre systématique quantitative, typologie de l’usage et modélisation génétique. Bull Soc Géol de France 8:337–353Google Scholar
  17. De Marchi G, Comin-Chiaramonti P, De Vito P, Sinigoi S, Castillo AMC (1988) Lherzolite-dunite xenoliths from Eastern Paraguay: petrological constraints to mantle metasomatism. In: Piccirillo EM, Melfi AJ (eds) The Mesozoic Flood Volcanism from the Paraná Basin (Brazil). Petrogenetic and geophysical aspects. Iag-Usp, São Paulo, Brazil, pp 207–227Google Scholar
  18. Erlank AJ, Waters FG, Hawkesworth CJ et al (1987) Evidence for mantle metasomatism in peridotite nodules from the Kimberley pipes, South Africa. In: Menzies ML, Hawkesworth CJ (eds) Mantle metasomatism. Academic, London, pp 221–311Google Scholar
  19. Fabriès J (1979) Spinel-olivine geothermometry in peridotites from ultramafic complexes. Contrib Mineral Petrol 69:329–336CrossRefGoogle Scholar
  20. Franz G, Lucassen F, Kramer W et al (2006) Crustal evolution at the Central Andean continental margin: a geochemical record of crustal growth, recycling and destruction. In: Oncken O, Chong G, Franz G et al (eds) The Andes: Active Subduction Orogeny. Frontiers in Earth Sciences, 1. Springer Verlag, Heidelberg, pp 45–64Google Scholar
  21. Frey FA, Green DH (1974) The mineralogy, geochemistry and origin of lherzolite inclusions in Victorian basanites. Geoch Cosmochim Acta 38:1023–1050Google Scholar
  22. Fulfaro V (1996) Geology of Eastern Paraguay. In: Comin-Chiaramonti P, Gomes CB (eds) Alkali magmatism in Central Eastern Paraguay. Brazil, Edusp/Fapesp, pp 17–31Google Scholar
  23. Gibson SA, Thompson RN, Day JA (2006) Timescales and mechanism of plume-lithosphere interaction: 40Ar/39Ar geochronology and geochemistry of alkaline igneous rocks from the Paraná-Etendeka large igneous province. Earth Plan Sci Lett 251:1–17CrossRefGoogle Scholar
  24. Girardi VAV (2006) Sr-Nd isotopic study of selected Paleo- and Mesoproterozoic mafic intrusions from cratonic areas of Brazil and Uruguay: inferences on their mantle sources. V South American Symposium on Isotope Geology- Uruguay, Short papers, pp. 378–381Google Scholar
  25. Gregoire M, Tinguely C, Bell DR, Le Roex AP (2005) Spinel lherzolite xenoliths from the Premier kimberlite (Kaapvaal craton, South Africa): nature and evolution of the shallow upper mantle beneath the Bushveld complex. Lithos 84:185–205CrossRefGoogle Scholar
  26. Hart SR, Zindler A (1989) Constraints on the nature and the development of chemical heterogeneities in the mantle. In: Peltier WR (ed) Mantle convection plate tectonics and global dynamics. Gordon and Breach Sciences Publishers, New York, pp 261–388Google Scholar
  27. Hauri EH (1997) Melt migration and mantle chromatography, I: simplified theory and conditions for chemical and isotopic decoupling. Earth Plan Sci Lett 153:1–19CrossRefGoogle Scholar
  28. Hirschmann M (2000) Mantle solidus: experimental constraints and the effects of peridotite composition. Geochem Geophys Geosyst 1(10):1042CrossRefGoogle Scholar
  29. Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust and oceanic crust. Earth Plan Sci Lett 153:1–19Google Scholar
  30. Johnson KTM, Dick HJB, Shimizu N (1990) Melting in oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. J Geophys Res 95:2661–2678CrossRefGoogle Scholar
  31. Keller J, Hoefs J (1995) Stable isotope characteristics of recent natrocarbonatites from Oldoinyo Lengai. In: Bell K, Keller J (eds) Carbonatite volcanism: Oldoiynio Lengai and the petrogenesis of natrocarbonatites. Springer, Berlin, pp 113–123Google Scholar
  32. Kyser TK (1990) Stable isotopes in the continental lithospheric mantle. In: Menzies MA (ed) Continental mantle. Clarendon, Oxford, pp 127–156Google Scholar
  33. Kyser TK, O’Neil JR, Carmichael ISE (1981) Oxygen isotope thermometry of basic lavas and mantle nodules. Contrib Mineral Petrol 77:11–23CrossRefGoogle Scholar
  34. Laurora A, Mazzucchelli M, Rivalenti G et al (2001) Metasomatism and melting in carbonated peridotite xenoliths from the mantle wedge: the Gobernador Gregore case (Southern Patagonia). J Petrol 42:69–87CrossRefGoogle Scholar
  35. Leitch AM, Davis GF (2001) Mantle plumes and flood basalts: enhanced melting from plume ascent and an eclogite component. J Geophys Res 106:2047–2059CrossRefGoogle Scholar
  36. Le Maitre RW (1989) A classification of igneous rocks and glossary of terms. Blackwell Scientific Publications, Oxford, p 193Google Scholar
  37. Lucassen F, Becchio R, Wilke HG et al (2000) Proterozoic– Paleozoic development of the basement of the Central Andes (18°-26°)–a mobile belt of the South American craton. J South Am Earth Sci 13:697–715CrossRefGoogle Scholar
  38. Lucassen F, Escayola M, Franz G, Romer RL, Koch K (2002) Isotopic composition of late Mesozoic basic and ultrabasic rocks from Andes, 23–32º S)–implications for the Andean mantle. Contrib Mineral Petrol 143:336–349Google Scholar
  39. Lucassen F, Franz G, Viramonte J, Romer RL, Dulski P, Lang A (2005) The late Cretaceous lithospheric mantle beneath the Central Andes: evidence from phase equilibrium and composition of mantle xenoliths. Lithos 82:379–406CrossRefGoogle Scholar
  40. Lucassen F, Franz G, Romer RL, Schultz F, Dulski P, Wemmer K (2007) Pre-Cenozoic intra-plate magmatism along the Central Andes (17–34°S): Composition of the mantle at an active margin. Lithos 99:312–338CrossRefGoogle Scholar
  41. MacRae NE (1979) Silicate glass and sulfides in ultramafic xenoliths, Newer basalts, Victoria, Australia. Contrib Mineral Petrol 68:275–280CrossRefGoogle Scholar
  42. McKenzie D, O’Nions RK (1991) Partial melt distributions from inversion of rare earth element concentrations. J Petrol 32:1021–1091Google Scholar
  43. Menzies MA, Hawkesworth CJ (1987) Mantle Metasomatism. Academic, Geology Series, London, p 453Google Scholar
  44. Menzies MA, Kempton P, Dungan M (1985) Interaction of continental lithosphere and asthenospheric melts below the Geronimo volcanic field, Arizona. J Petrol 26:663–693Google Scholar
  45. Menzies MA, Rogers N, Tindle A, Hawkesworth CJ (1987) Metasomatic and enrichment processes in lithospheric peridotites, an effect of asthenosphere-lithosphere interaction. In: Menzies MA, Hawkesworth CJ (eds) Mantle Metasomatism. Academic, Geology Series, London, pp 313–364Google Scholar
  46. Mercier JC (1980) Single-pyroxene geothermometry and geobarometry. Am J Sci 61:603–615Google Scholar
  47. Mercier JC, Benoit V, Girardeau J (1984) Equilibrium state of diopside-bearing harzburgites from ophiolites: geobarometric and geodynamic implications. Contrib Mineral Petrol 85:391–403CrossRefGoogle Scholar
  48. Moore AE, Blenkinsop TG, Cotterill F (2008) Controls on post-Gondwana alkaline volcanism in Southern Africa. Earth Planet Sci Lett 268:151–164CrossRefGoogle Scholar
  49. Morimoto N (1989) Nomenclature of pyroxenes. Can Mineral 27:143–156Google Scholar
  50. Nielson JE, Noller JS (1987) Processes of mantle metasomatism; constraints from observations of composite mantle xenoliths. Geol Soc of America, S.P. 215:61–75Google Scholar
  51. Nimis P (1995) A clinopyroxene geobarometer for basaltic systems based on crystal-structure modelling. Contrib Mineral Petrol 121:115–125CrossRefGoogle Scholar
  52. O’Reilly SY, Griffin WC (1988) Mantle metasomatism beneath western Victoria, Australia. 1: Metasomatic processes in Cr diopside lherzolites. Geochim Cosmochim Acta 52:433–448Google Scholar
  53. Oliveiros V, Morata D, Aguirre L, Féraud G, Fornari M (2007) Jurassic to Early Cretaceous subduction-related magmatism in the Coastal Cordillera of northern Chile (18°30’–24°S): geochemistry and petrogenesis. Rev Geol de Chile 34:209–232Google Scholar
  54. Omarini R, Sureda RJ, Gotze HJ, Seilacher A, Pfluger F (1999) Puncoviscana folded belt in northwestern Argentina: testimony of late Proterozoic Rodinia fragmentation and pre-Gondwana collisional episodes. Intern J Earth Sci 88:76–97CrossRefGoogle Scholar
  55. Perkins G, Zachary S, Serverstone J (2006) Oxygen isotope evidence for subduction and rift-related mantle metasomatism beneath the Colorado Plateau-Rio Grande rift transition. Contrib Mineral Petrol 151:633–650CrossRefGoogle Scholar
  56. Petrini R, Comin-Chiaramonti P, Vannucci R (1994) Evolution of the lithosphere beneath Eastern Paraguay: geochemical evidence from mantle xenoliths in the Asunción-Ñemby nephelinites. Mineral Petrographica Acta 37:247–259Google Scholar
  57. Piccirillo EM, Melfi AJ (1988) The Mesozoic Flood Volcanism from the Paraná Basin (Brazil). Petrogenetic and geophysical aspects. Iag-Usp, São Paulo, Brazil, p 600Google Scholar
  58. Princivalle F, Tirone M, Comin-Chiaramonti P (2000) Clinopyroxenes from metasomatized spinel-peridotite mantle xenoliths from Ñemby (Paraguay): crystal chemistry and petrological implications. Mineral Petrol 70:25–35CrossRefGoogle Scholar
  59. Rampone E, Bottazzi P, Ottolini L (1991) Complementary Ti and Zr anomalies in orthopyroxene and clinopyroxene from mantle peridotites. Nature 354:518–521CrossRefGoogle Scholar
  60. Ramos VA (2008) The basement of the central Andes: the Arequipa and related terranes. Ann Rev Earth Planet Sci 36:289–324CrossRefGoogle Scholar
  61. Ramos VA, Aleman A (2000) Tectonic evolution of Andes. In: Cordani UG, Milani EJ, Thomas Filho A, Campos DA (Eds) Tectonic evolution of South America. 31° International Geological Congress, Rio de Janeiro, pp 635–688Google Scholar
  62. Rapela CW, Pankhurst RJ, Casquet C et al (2007) The Río de la Plata craton and the assembly of SW Gondwana. Earth-Sci Rev 83:49–82CrossRefGoogle Scholar
  63. Rivalenti G, Vannucci R, Rampone E et al (1996) Peridotite clinopyroxene chemistry reflects mantle processes rather than continental versus oceanic settings. Earth Plan Sci Lett 139:423–437CrossRefGoogle Scholar
  64. Rivalenti G, Mazzucchelli M, Girardi VAV et al (1998) Petrogenesis of the Paleoproterozoic basalt–andesite–rhyolite dyke association in the Carajas region, Amazonian craton. Lithos 43:235–265CrossRefGoogle Scholar
  65. Rivalenti G, Mazzucchelli M, Girardi VAV et al (2000) Composition and processes of the mantle lithosphere in northeastern Brazil and Fernando de Noronha: evidence from mantle xenoliths. Contrib Mineral Petrol 138:308–325CrossRefGoogle Scholar
  66. Rivalenti G, Mazzucchelli M, Zanetti A et al (2007) Xenoliths from Cerro de los Chenques (Patagonia): an example of slab-related metasomatism in the backarc lithospheric mantle. Lithos 99:45–67CrossRefGoogle Scholar
  67. Roden MF, Frey FA, Francis DM (1984) An example of consequent mantle metasomatism in peridotite inclusions from Nunivak Island, Alaska. J Petrol 25:546–577Google Scholar
  68. Salters VJM, Shimizu N (1988) World-wide occurrence of HFSE-depleted mantle. Geochim Cosmochim Acta 52:2177–2182CrossRefGoogle Scholar
  69. Scheuber E, González G (1999) Tectonics of the Jurassic-Early Cretaceous magmatic arc of the north Chilean Coastal Cordillera (22°–26°S): a story of crustal deformation along a convergent plate boundary. Tectonics 18:895–910CrossRefGoogle Scholar
  70. Schultz F, Lehmann B, Tawackoli S, Rössling R, Belyatsky B, Dulski P (2004) Carbonatite diversity in the Central Andes: the Ayopaya alkaline province, Bolivia. Contrib Mineral Petrol 148:391–408Google Scholar
  71. Sen G, Frey FA, Shimizu N, Leeman WP (1993) Evolution of the lithosphere beneath Oahu, Hawaii: rare earth element abundances in mantle xenoliths. Earth Plan Sci Lett 119:53–69CrossRefGoogle Scholar
  72. Shaw CS, Klügel A (2002) The pressure and temperature conditions and timing of glass formation in mantle-derived xenoliths from Baarley, West Eifel Germany: the case for amphibole breakdown, lava infiltration and mineral-melt reaction. Mineral Petrol 74:163–187CrossRefGoogle Scholar
  73. Song Y, Frey FA (1989) Geochemistry of peridotite xenoliths in basalts from Hannuoba, eastern China: implications for subcontinental mantle heterogeneity. Geochim Cosmoch Acta 53:97–113CrossRefGoogle Scholar
  74. Spera FJ (1984) Carbon ioxide in petrogenesis. III: role of volatiles in the ascent of alkaline-bearing magmas with special reference to xenolith-bearing mafic lavas. Contrib Mineral Petrol 88:217–232CrossRefGoogle Scholar
  75. Speziale S, Censi P, Comin-Chiaramonti P, Ruberti E, Gomes CB (1997) Oxygen and Carbon isotopes in the Barra do Itapirapuã and Mato Preto carbonatites (southern Brazil). Mineral Petrographica Acta 40:1–21Google Scholar
  76. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts. In: Saunders D, Norry MJ (eds) Magmatism in the ocean basins. Geol. Society, Special Paper 42: 313–345Google Scholar
  77. Taylor GK, Dashwood B, Grocott J (2005) Central Andean rotation pattern: evidence from paleomagnetic rotations of an anomalous domain in the forearc of northern Chile. Geology 33:777–780CrossRefGoogle Scholar
  78. Velázquez VF, Comin-Chiaramonti P, Cundari A, Gomes CB, Riccomini C (2006) Cretaceous Na-alkaline magmatism from Misiones province (Paraguay): relationships with the Paleogene Na-alkaline analogue from Asunción and geodynamic significance. J Geology 114:593–614CrossRefGoogle Scholar
  79. Viramonte JG, Kay SM, Becchio R, Escayola M, Novitski I (1999) Cretaceous rift related magmatism in central-western South America. J South Am Earth Sci 12:109–121CrossRefGoogle Scholar
  80. Wang J, Hattori KH, Kilian R, Stern CR (2007) Metasomatism of sub-arc peridotites below southermost South America: reduction of fO2 by slab-melt. Contrib Mineral Petrol 153:607–624CrossRefGoogle Scholar
  81. Wells PRA (1977) Pyroxene thermometry in simple and complex systems. Contrib Mineral Petrol 42:109–121Google Scholar
  82. Zindler A, Hart SR (1986) Chemical geodynamics. Annu Rev Earth Planet Sci 14:493–571CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • P. Comin-Chiaramonti
    • 1
    Email author
  • F. Lucassen
    • 2
    • 3
  • V. A. V. Girardi
    • 4
  • A. De Min
    • 1
  • C. B. Gomes
    • 4
  1. 1.Earth Sciences DepartementTrieste UniversityTriesteItaly
  2. 2.GeoForschungsZentrum PotsdamPotsdamGermany
  3. 3.Fachgebiet PetrologieTechnische Universität BerlinBerlinGermany
  4. 4.Instituto de GeociênciasUSPSão PauloBrazil

Personalised recommendations