Mineralogy and Petrology

, Volume 90, Issue 1–2, pp 51–72 | Cite as

Remnants of boninitic melts in the upper mantle beneath the central Pannonian Basin?

  • E. Bali
  • G. Falus
  • C. Szabó
  • D. W. Peate
  • K. Hidas
  • K. Török
  • T. Ntaflos
Article

Summary

We present a detailed textural and compositional study of two orthopyroxene-rich olivine websterites. One occurs as a vein in a harzburgite xenolith and the other is an individual xenolith, both found at Szentbékkálla in the Bakony–Balaton Highland Volcanic Field (central Pannonian Basin, western Hungary). The textural features of these orthopyroxene-rich rocks suggest that they crystallized from silicate melts to form veins in peridotite mantle rock. Their geochemical features, such as the presence of Al2O3-poor orthopyroxenes, Cr-rich spinels, and clinopyroxenes with U-shaped chondrite-normalized REE-patterns, indicate that the vein material formed from Mg-rich silicic (boninitic) melts at mantle depths. The olivine fabric investigation of both the veins and the wall-rock suggest that the development of the veins was followed by subsequent recrystallization during the Cenozoic evolution of the Carpathian–Pannonian region.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anders, E, Grevesse, N 1989Abundances of the elements: meteoric and solarGeochim Cosmochim Acta53197214CrossRefGoogle Scholar
  2. Bali E (2004) Fluid/melt–wall-rock interaction in the upper mantle beneath the Central Pannonian basin. PhD Thesis, Eötvös University, pp 160Google Scholar
  3. Bali E, Zajacz Z, Kovács I, Szabó Cs, Halter W, Vaselli O, Török K, Bodnar RJ (2006) A quartz-bearing orthopyroxene-rich websterite xenolith from the Pannonian Basin, western Hungary: Evidence for release of Si-oversaturated melts from the subducted slab. Earth Planet Sci Lett, in pressGoogle Scholar
  4. Ballhaus, C, Berry, RF, Green, DH 1991Oxygen fugacity controls in the Earth’s upper mantleNature348437440CrossRefGoogle Scholar
  5. Balogh, K, Árva-Sós, E, Pécskay, Z, Ravasz-Baranyai, L 1986K/Ar dating of Post-Sarmatian alkali basaltic rocks in HungaryActa Mineral Petrogr Szeged287593Google Scholar
  6. Bédard, JH 1999Petrogenesis of boninites from the Betts Cove ophiolite, Newfoundland, Canada: identification of subducted source componentsJ Petrol4018531889CrossRefGoogle Scholar
  7. Benedek, K 2002Paleogene igneous activity along the easternmost segment of the Periadriatic-Balaton LineamentActa Geol Hung45359371CrossRefGoogle Scholar
  8. Benedek, K, Pecskay, Z, Szabó, CS, Josvai, J, Németh, T 2004Paleogene igneous rocks in the Zala Basin (Western Hungary): link to the Paleogene magmatic activity along the Periadriatic lineamentGeol Carp554350Google Scholar
  9. Blusztajn, J, Shimizu, N 1994The trace-element variations in clinopyroxenes from spinel peridotites from southwest PolandChem Geol1116788CrossRefGoogle Scholar
  10. Brey, GP, Köhler, TP 1990Geothermobarometry in four phase lherzolites II. New thermobarometers and practical assessment of existing thermobarometersJ Petrol3113531378Google Scholar
  11. Bussod, GY, Christie, JM 1991Textural development and melt topology in spinel lherzolite experimentally deformed at hypersolidus conditionsJ Petrol Spec Lherzolite Issue321739Google Scholar
  12. Carter, NL, Avé Lallemant, HG 1970High temperature flow of dunite and peridotiteBull Geol Soc Am8121812202CrossRefGoogle Scholar
  13. Crawford, AJ, Beccaluva, L, Serri, G 1981Tectono-magmatic evolution of the West Philippine-Mariana region and the origin of boninitesEarth Planet Sci Lett54346356CrossRefGoogle Scholar
  14. Crawford, AJ, Fallon, TJ, Green, DH 1989

    Classification, petrogenesis and tectonic setting of boninites

    Crawford, AJ eds. Boninites and related rocksUniversity PressCambridge250
    Google Scholar
  15. Csontos, L, Vörös, A 2004Mesozoic plate tectonic reconstruction of the Carpathian regionPalaeogeogr Palaeoclim Palaeoec210156CrossRefGoogle Scholar
  16. Cvetkovic, V, Downes, H, Prelevic, D, Jovanovic, M, Lazarov, M 2004Characteristics of the lithospheric mantle beneath East Serbia inferred from ultramafic xenoliths in Palaeogene basanitesContrib Mineral Petrol148335357CrossRefGoogle Scholar
  17. Cvetkovic V, Lazarov M, Downes H, Prelevic D (2006) Modification of the subcontinental mantle beneath East Serbia: Evidence from orthopyroxene-rich xenoliths. Lithos (in press)Google Scholar
  18. Danyushevsky, LV, Sobolev, AV, Fallon, TJ 1995North Tongan high-Ca boninite petrogenesis: the role of Samoan plume and subduction zone – transform fault transitionJ Geodyn20219241CrossRefGoogle Scholar
  19. Dobosi G (2003) The geochemistry of upper mantle and lower crust based on the xenoliths of alkaline basalts based mainly on Carpathian basin samples. DSc Thesis, Hungarian Academy of Science, pp 294Google Scholar
  20. Downes, H 1997

    Shallow continental lithospheric mantle heterogeneity – petrological constraints

    Fichs, K eds. Upper mantle heterogeneities from active and passive seismologyKluver AcademicDordrecht295308
    Google Scholar
  21. Downes, H, Embey-Isztin, A, Thirlwall, MF 1992Petrology and geochemistry of spinel peridotite xenoliths from the western Pannonian Basin (Hungary): evidence for an association between enrichment and texture in the upper mantleContrib Mineral Petrol107340354CrossRefGoogle Scholar
  22. Embey-Isztin, A, Scharbert, HG, Dietrich, H, Poulditis, H 1989Petrology and geochemistry of peridotite xenoliths in alkali basalts from the Transdanubian Volcanic RegionJ Petrol34317343Google Scholar
  23. Embey-Isztin, A, Downes, H, James, DE, Upton, BGJ, Dobosi, G, Ingram, G, Harmon, RS, Scharbert, HG 1993The petrogenesis of Pliocene alkaline volcanic rocks from the Pannonian Basin, Eastern Central EuropeJ Petrol34317343Google Scholar
  24. Embey-Isztin, A, Dobosi, G, Altherr, R, Meyer, HP 2001Thermal evolution of the lithosphere beneath the western Pannonian Basin: evidence from deep-seated xenolithsTectonophysics331285306CrossRefGoogle Scholar
  25. Ewart, A, Griffin, WL 1994Application of proton-microprobe data to trace element partitioning in volcanic rocksChem Geol117251284CrossRefGoogle Scholar
  26. Fallon, TJ, Danyushevsky, LV 2000Melting of refractory mantle at 1.5, 2 and 2.5 GPa under anhydrous and H2O-undersaturated conditions: implications for the petrogenesis of high-Ca boninites and the influence of subduction components on mantle meltingJ Petrol41257283CrossRefGoogle Scholar
  27. Falus Gy (2004) Microstructural analysis of upper mantle peridotites: their application in understanding mantle processes during the formation of the Intra-Carpathian Basin System. PhD Thesis, Eötvös University, Budapest, pp 163Google Scholar
  28. Falus, Gy, Szabó, Cs 2004Upper mantle xenoliths from Tihany: Traceable lithosphere evolution in the Bakony–Balaton Highland Volcanic Field?Bull Hung Geol Soc134499520Google Scholar
  29. Fodor L, Csontos L, Bada G, Györfy I, Benkovics L (1999) Tertiary tectonic evolution of the Pannonian basin and neighbouring orogenes: a new synthesis of paleostress data. In: Durand B, Jolivet L, Horváth F, Séranne M (eds) The Mediterranean Basins: Tertiary extension within the Alpine Orogen. Geol Soc London Spec Publ 134: 295–334Google Scholar
  30. Green, DH, Wallace, ME 1988Mantle metasomatism by ephemeral carbonatite meltsNature336459462CrossRefGoogle Scholar
  31. Harangi, Sz, Downes, H, Kósa, L, Szabó, Cs, Thirlwall, MF, Mason, PRD, Mattey, D 2001Almandine garnet in calc-alkaline volcanic rocks of the Northern Pannonian basin (Eastern-Central Europe): geochemistry, petrogenesis and geodynamic implicationsJ Petrol4218131843CrossRefGoogle Scholar
  32. Hawkins, JW, Bloomer, SH, Evans, CA, Melchior, JT 1984Evolution of intra-oceanic arc-trench systemsTectonophysics102174205CrossRefGoogle Scholar
  33. Hickey, RL, Frey, FA 1982Geochemical characteristics of boninite series volcanics: implications for their sourceGeochim Cosmochim Acta4620992115CrossRefGoogle Scholar
  34. Hidas K (2006) Poikilitic orthopyroxene-rich peridotites from the Tihany Volcano, Bakony–Balaton Highland Volcanic Field. MSc Thesis, Eötvös University, Budapest, pp 132Google Scholar
  35. Holtzmann, BK, Kohlstedt, DL, Zimmerman, ME, Heidelbach, F, Hiraga, T, Hustoft, J 2003Melt segregation and strain partitioning: implications for seismic anisotropy and mantle flowScience30112271230CrossRefGoogle Scholar
  36. Horváth, F 1993Towards a mechanical model for the formation of the Pannonian basinTectonophysics226333357CrossRefGoogle Scholar
  37. Huismans, RS, Podlachikov, YY, Cloetingh, S 2001Dynamic modelling of the transition from passive to active rifting, application to the Pannonian basinTectonics2010211039CrossRefGoogle Scholar
  38. Jenner, GA 1981Geochemistry of high-Mg andesites from Cape Vogel, Papua New GuineaChem Geol33307332CrossRefGoogle Scholar
  39. Jugovics L (1971) The set-up of the basaltic provinces of the Balaton Highland and the Tapolca basin. (A Balaton-felvidék és a Tapolcai-medence bazaltterületeinek felépítése.) Annual report of the Hung Geol Inst from 1968: 75–82 (In Hungarian)Google Scholar
  40. Kamenetsky, VS, Sobolev, AV, Eggins, SM, Crawford, AJ, Arculus, RJ 2002Olivine-enriched melt inclusions in chromites from low-Ca boninites, Cape Vogel, Papua New Guinea: evidence for ultramafic primary magma, refractory mantle source and enriched componentsChem Geol183287303CrossRefGoogle Scholar
  41. Kázmér, M, Kovács, S 1985Permian-Paleogene paleogeography along the Eastern part of the Insubric-Periadriatic Lineament system: evidence for continental escape of the Bakony-Drauzug UnitActa Geol Hung287184Google Scholar
  42. Kelemen, PB, Dick, HJB, Quick, JE 1992Formation of harzburgite by pervasive melt/rock reaction in the upper mantleNature358635644CrossRefGoogle Scholar
  43. Kesson, SE, Ringwood, AE 1989Slab-mantle interactions: 2. The formation of diamondsChem Geol7897118CrossRefGoogle Scholar
  44. Kinzler, RJ, Grove, TL 1992Primary magmas of Mid-Ocean Ridge Basalts, I. Experiments and methodsJ Geophys Res9768856906Google Scholar
  45. Lenkey L (1999) Geothermics of the Pannonian Basin and its bearing on the tectonics of basin evolution. PhD Thesis, Vrije Universiteit Amsterdam, pp 215Google Scholar
  46. Lenoir, X, Dautria, JM, Bodinier, JL 1997Les enclaves mantelluques protogranulaires du Florez: témoins de l’érosion lithosphérique en bordure du panache du Massif Central. (Erosion of the mantle lithosphere at the edge of the Massif Central plume, as recorded by protogranular xenoliths from Florez.)Compt Rend Acad Sci325235241In French, abridged version in EnglishGoogle Scholar
  47. Litasov, KD, Foley, SF, Litasov, YD 2000Magmatic modification and metasomatism of the subcontinental mantle beneath Vitim Volcanic Field (East Siberia): evidence from trace element data on pyroxenite and peridotite xenoliths from Miocene picrobasaltLithos5483114CrossRefGoogle Scholar
  48. Luhr, JF, Carmichael, ISE 1980The Colima volcanic complex, Mexico, I: post-caldera andesites from Volcan ColimaContrib Mineral Petrol71343372CrossRefGoogle Scholar
  49. Martin, U, Németh, K 2004Mio/Pliocene phreatomagmatic volcanism in the Bakony–Balaton Highland Volcanic Field, HungaryActa Geol Hun Series Geol2673132Google Scholar
  50. McDonough, WF, Sun, S-S 1995The composition of the EarthChem Geol120223253CrossRefGoogle Scholar
  51. McInnes, BIA, Gregoire, M, Binns, RA, Herzig, PM, Hannington, MD 2001Hydrous metasomatism of the sub-arc mantle, Lihir, Papua New Guinea: petrology and geochemistry of fluid metasomatised mantle wedgeEarth Planet Sci Lett188169183CrossRefGoogle Scholar
  52. Mckenzie, D, O’Nions, RK 1991Partial melt distributions from inversion of Rare Earth Element concentrationsJ Petrol3210211091Google Scholar
  53. Meijer A (1980) Primitive arc volcanism and a boninite series: examples from western Pacific island arcs. In: Hayes DE (ed) Tectonic and Geological Evolution of Southwest Asian Seas and Islands, Part 1 Amer Geophys Union Monograph 21: Washington DC, pp 269–282Google Scholar
  54. Melcher, F, Meisel, T, Puhl, J, Koller, F 2002Petrogenesis and geotectonic setting of ultramafic rocks in the Eastern Alps: constraints form geochemistryLithos6569112CrossRefGoogle Scholar
  55. Mercier, JC, Nicolas, A 1975Textures and fabrics of upper mantle peridotites as illustrated by xenoliths from basaltsJ Petrol16454487Google Scholar
  56. Morgan, Z, Liang, Y 2005An experimental study of the kinetics of lherzolite reactive dissolution with the application to melt channel formationContrib Mineral Petrol150369385CrossRefGoogle Scholar
  57. Murton BJ (1989) Tectonic controls on boninite genesis. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins. Geol Soc Spec Publ 42: 347–377Google Scholar
  58. Parkinson, IJ, Pearce, JA 1998Peridotites from the Izu-Bonin-Mariana Forearc (ODP Leg 125): evidence for mantle melting and melt-mantle interaction in a supra-subduction zone settingJ Petrol3915771618CrossRefGoogle Scholar
  59. Pearce, NJG, Perkins, WT, Westgate, JA, Gorton, MP, Jackson, SE, Neal, CR, Chenery, SP 1997A compilation of new major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materialsJ Geostand Geoanalys21115144Google Scholar
  60. Roeder, PL, Emslie, RF 1970Olivine-liquid equilibriumContrib Minerol Petrol29275289CrossRefGoogle Scholar
  61. Santos, JF, Schärer, U, Gil Ibarguchi, JI, Girardeau, J 2002Genesis of pyroxenite-rich peridotite at Cabo Ortegal (NW Spain): Geochemical and Pb–Sr–Nd isotope dataJ Petrol431743CrossRefGoogle Scholar
  62. Seghedi, I, Downes, H, Szakács, A, Mason, P, Thirlwall, MF, Rosu, E, Pécskay, Z, Márton, E, Panaiotu, C 2004Neogene–Quaternary magmatism and geodynamics in the Carpathian–Pannonian region: a synthesisLithos72117146CrossRefGoogle Scholar
  63. Smith, D, Riter, JCA, Mertzman, SA 1999Water-rock interactions, orthopyroxene growth, and Si-enrichment in the mantle: evidence in xenoliths from the Colorado Plateau, southwestern United StatesEarth Planet Sci Lett1654554CrossRefGoogle Scholar
  64. Szabó, Cs, Vaselli, O, Vannucci, R, Bottazzi, P, Ottolini, L, Coradossi, N, Kubovics, I 1995aUltramafic xenoliths from the Little Hungarian Plain (Western Hungary): a petrologic and geochemical studyActa Vulcanol7249267Google Scholar
  65. Szabó, Cs, Harangi, Sz, Vaselli, O, Downes, H 1995bTemperature and oxygen fugacity in peridotite xenoliths from the Carpathian–Pannonian regionActa Volcanol7231241Google Scholar
  66. Tommasi, A, Mainprice, D, Canova, G, Chastel, Y 2000Viscoplastic self-consistent and equilibrium-based modeling of olivine lattice preferred orientations. Implications for the upper mantle seismic anisotropyJ Geophys Res10578937908CrossRefGoogle Scholar
  67. Tsuchiya, N, Suzuki, S, Kimura, JI, Kagami, H 2005Evidence for slab melt/mantle reaction: petrogenesis of Early Cretaceous and Eocene high-Mg andesites from the Kitakami Mountains, JapanLithos79179206CrossRefGoogle Scholar
  68. Vauchez, A, Tommasi, A 2003Plume-lithosphere interaction: effects on the seismic anisotropy of the lithospheric mantleGeophys Res Abs511450Google Scholar
  69. Yaxley, GM, Crawford, AJ, Green, DH 1991Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, AustraliaEarth Planet Sci Lett107305317CrossRefGoogle Scholar
  70. Yaxley, GM, Green, DH, Kamenetsky, V 1998Carbonatite metasomatism in the South Eastern Australian lithosphereJ Petrol3919171930CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • E. Bali
    • 1
  • G. Falus
    • 1
    • 2
  • C. Szabó
    • 1
  • D. W. Peate
    • 3
  • K. Hidas
    • 1
  • K. Török
    • 2
  • T. Ntaflos
    • 4
  1. 1.Lithosphere Fluid Research Lab, Department of Petrology and GeochemistryEötvös UniversityBudapestHungary
  2. 2.Eötvös Loránd Geophysical InstituteBudapestHungary
  3. 3.Department of GeoscienceUniversity of IowaIowaUSA
  4. 4.Department of Geological Sciences GeozentrumUniversity of ViennaWienAustria

Personalised recommendations