Advertisement

Mineralogy and Petrology

, Volume 88, Issue 1–2, pp 321–340 | Cite as

Origin of eclogite and garnet pyroxenite from the Moldanubian Zone of the Bohemian Massif, Czech Republic and its implication to other mafic layers embedded in orogenic peridotites

  • M. Obata
  • T. Hirajima
  • M. Svojtka
Article

Summary

The granulite terrane of the Czech part of the Gföhl unit includes numerous small bodies of mantle derived peridotite, some of which contain layers or lenses of eclogite and garnet pyroxenite. These eclogitic rocks have generally been considered to be high-pressure crystal cumulates formed in the upper mantle. We present new analyses of whole-rock major and trace element contents for three kynanite-quartz eclogite samples taken from the Nové Dvory garnet peridotite body. Integrating these data with previously published analyses from the literature on eclogitic rocks from this terrane, we demonstrate that a magnesian group of eclogites, including these three new samples, were originally formed as cumulus gabbros, which were later transformed to eclogites in the mantle. A gabbroic origin for some mafic layers (Type II) has been advocated for other orogenic peridotites, such as Beni Bousera (Morocco), Ronda (Spain), and Horoman (Japan). By comparing these sets of data with those from the Bohemian Massif, we propose a simple method of identifying groups of metagabbros by utilizing MgO-normalization in oxide ratio plots for whole-rock major element analyses.

Keywords

Olivine Kyanite Bohemian Massif Garnet Peridotite Olivine Gabbro 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allegre, CJ, Turcotte, DL 1986Implications of a two-component marble-cake mantleNature323123127CrossRefGoogle Scholar
  2. Beard, BL, Medaris, LG,Jr, Johnson, CM, Brueckner, HK, Mésař, Z 1992Petrogenesis of Variscan high-temperature Group A eclogites from the Moldanubian Zone of the Bohemian Massif, CzechoslovakiaContrib Mineral Petrol111468483CrossRefGoogle Scholar
  3. Becker, H 1996Crustal trace element and isotopic signatures in garnet pyroxenites from garnet peridotite massifs from Lower AustriaJ Petrol37785810Google Scholar
  4. Buday T (1996) Geologická mapa ČR: mapa předčtvrtohornéch útvarů 1:200000. List Brno. Český geologický ústav, PrahaGoogle Scholar
  5. Dudek A (1990) Geologická mapa ČSSR: mapa předčtvrtohornéch útvarů 1:200000. List Jindřichův Hradec. Ústředné ústav geologický, PrahaGoogle Scholar
  6. Dudek, A, Fediuková, E 1974Eclogites of the Bohemian MoldanubicumNeues Jahhrbuch für Mineralogie121127159Google Scholar
  7. Eggins, SM 2003Laser ablation ICP-MS analysis of geological materials prepared as lithium borate glassesGeostandards Newsletter27145162CrossRefGoogle Scholar
  8. Eggins, SM, Rudnick, RL, McDonough, WF 1998The composition of peridotites and their minerals: a laser ablation ICP-MS studyEarth and Planet Sci Lett1545371CrossRefGoogle Scholar
  9. Fediuková, E 1978Eclogites in CzechoslovakiaKrystalinikum202748Google Scholar
  10. Irvine, TN 1979Rocks whose composition is determined by crystal accumulation and sortingYoder, HS eds. The Evolution of the Igneous RocksPrinceton University PressPrinceton243306Google Scholar
  11. Jakeš P, Jelének E, Fiala J, Taylor RS (1994) Major and trace elements in “eclogites” and their host garnet peridotites, data from the Bohemian massif. In: Bucha V, Bléžkovský M (eds) Crustal structure of the Bohemian massif and the West Carpatians. p 257–269, publ in co-edit Academia Praha and Springer VerlagGoogle Scholar
  12. Jelinek E (1985) Nové Dvory and Mstěnice near Hrotorice – garnet peridotite with three types of eclogite. In: Dudek A, Mésař Z (eds) 2nd International Eclogite Conference – post conference excursion, Praha, pp 11–16Google Scholar
  13. Kornprobst, J, Piboule, M, Roden, M, Tabit, A 1990aCorundum-bearing garnet clinopyroxenites at Beni Bouchera (Morocco): original plagioclase-rich gabbros recrystallized at depth within the mantle?J Petrol31717745Google Scholar
  14. Kornprobst J, Tabit A, Piboule M (1990b) Corundum-bearing garnet pyroxenites at Beni Bouchera (Rif, Morocco). Analytical data on rocks and minerals. Note OPGC, Universite Blaise Pascal, No. 106Google Scholar
  15. Matte, P, Maluski, H, Rajlich, P, Franke, W 1990Terrane boundaries in the Bohemian Massif: Result of large scale Variscan shearingTectonophysics177151170CrossRefGoogle Scholar
  16. McKenzie, DP 1986The mantle mixing still a mysteryNature323297CrossRefGoogle Scholar
  17. Medaris, LG,Jr, Wang, HF, Mésař, Z, Jelének, E 1990Thermobarometry, diffusion modeling and cooling rates of crustal garnet peridotites: two examples from the Moldanubian zone of the Bohemian MassifLithos25189202CrossRefGoogle Scholar
  18. Medaris, LG,Jr, Beard, BJ, Johnson, CM, Valley, JW, Spicuzza, MJ, Jelének, E, Mésař, Z 1994Geochemistry of peridotites, pyroxenites, and eclogites in the Gföhl Nappe: constraints on Variscan evolution of lithosphere and asthenosphere in the Bohemian MassifJ Czech Geol Soc396970Google Scholar
  19. Medaris, LG,Jr, Beard, BL, Johnson, CM, Valley, JW, Spicuzza, MJ, Jelének, E, Mésař, Z 1995aGarnet pyroxenite and eclogite in the Bohemian Massif: geochemical evidence for Variscan recycling of subducted lithosphereGeol Rundsch84489505CrossRefGoogle Scholar
  20. Medaris, LG,Jr, Jelének, E, Mésař, Z 1995bCzech eclogites: Terrane settings and implications for Variscan tectonic evolution of the Bohemian MassifEur J Mineral7728Google Scholar
  21. Medaris, LG,Jr, Beard, BL, Fournelle, JH, Ghent, ED, Jelének, E 1998Prograde eclogite in the Gföhl Nappe, Czech Republic: new evidence on Variscan high-pressure metamorphismJ Metam Geol16563576CrossRefGoogle Scholar
  22. Morishita, T, Arai, S 1997Diversity of occurrence of symplectite in the Horoman peridotite complex of the Hidaka belt, Hokkaido, northern Japan, and its bearing on the P–T history. (in Japanese with English abst.)Mem Geol Soc Japan47149162Google Scholar
  23. Morishita, T, Arai, S 2001Petrogenesis of corundum-bearing mafic rocks in the Horoman peridotite complex, JapanJ Petrol4212791299CrossRefGoogle Scholar
  24. Morishita, T, Kodera, T 1998Finding of corundum-bearing gabbro boulder possibly derived from the Horoman peridotite complex, Hokkaido, northern JapanJ Mineral Petrol Econ Geology935263CrossRefGoogle Scholar
  25. Morishita, T, Arai, S, Gervilla, F 2001High-pressure aluminous mafic rocks from the Ronda peridotite massif, southern Spain: significance of sapphirine- and corundum-bearing mineral assemblagesLithos57143161CrossRefGoogle Scholar
  26. Morishita, T, Arai, S, Gervilla, F, Green, DH 2003Closed-system geochemical recycling of crustal materials in alpine-type peridotiteGeochim Cosmochim Acta67303310CrossRefGoogle Scholar
  27. Morishita, T, Arai, S, Green, DH 2004Possible non-melted remnants of subducted lithosphere: experimental and geochemical evidence from corundum-bearing mafic rocks in the Horoman Peridotite Complex, JapanJ Petrol45235252CrossRefGoogle Scholar
  28. Nakamura, D, Svojtka, M, Naemura, K, Hirajima, T 2004Very high-pressure (>4 GPa) eclogite associated with the Moldanubian Zone garnet peridotite (Nové Dvory, Czech Republic)J Metam Geol22593603CrossRefGoogle Scholar
  29. Niida, K 1984Petrology of the Horoman ultramafic rocks in the Hidaka metamorphic belt, Hokkaido, JapanJ Fac Sci Hokkaido Univ Ser IV21197250Google Scholar
  30. Obata M, Suen CJ, Dickey JS (1980) The origin of mafic layers in the Ronda high-temperature peridotite intrusion, S. Spain – an evidence of partial fusion and fractional crystallization in the upper mantle. Colloques Internat CNRS no. 272: 257–268Google Scholar
  31. Saal, AE, Takazawa, E, Frey, FA, Shimizu, N, Hart, SR 2001Re–Os isotopes in the Horoman Peridotite: evidence for Refertalization?J Petrol422537CrossRefGoogle Scholar
  32. Shiotani, Y, Niida, K 1997Origin of mafic layers in the Horoman peridotite complexMem Geol Soc Japan4123137in Japanese with English abst.Google Scholar
  33. Suen, CJ, Frey, FA 1987Origin of the mafic and ultramafic rocks in the Ronda peridotiteEarth Planet Sc Lett85183202CrossRefGoogle Scholar
  34. Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composion and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Oceanic Basins. Geol Soc London, Special Publication 42: 313–345Google Scholar
  35. Takazawa, E, Frey, FA, Shimizu, N, Saal, A, Obata, M 1999Polybaric petrogenesis of mafic layers in the Horoman peridotite complex, JapanJ Petrol4018271851CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • M. Obata
    • 1
  • T. Hirajima
    • 1
  • M. Svojtka
    • 2
  1. 1.Department of Geology and Mineralogy, Graduate School of ScienceKyoto UniversityKyotoJapan
  2. 2.Institute of GeologyAcademy of SciencesCzech Republic

Personalised recommendations