Mineralogy and Petrology

, Volume 88, Issue 1–2, pp 181–206 | Cite as

Sub-solidus Oligocene zircon formation in garnet peridotite during fast decompression and fluid infiltration (Duria, Central Alps)

  • J. Hermann
  • D. Rubatto
  • V. Trommsdorff


A garnet peridotite lens from Monte Duria (Adula nappe, Central Alps, Northern Italy) contains porphyroblastic garnet and pargasitic amphibole and reached peak metamorphic conditions of ∼830 C, ∼2.8 GPa. A first stage of near isothermal decompression to pressures <2.0 GPa is characterised by domains where fine grained spinel, clinopyroxene, orthopyroxene and amphibole form. The newly formed amphibole contains elevated levels of fluid mobile elements such as Rb, Ba and Pb indicating that recrystallization was assisted by infiltration of a crustal-derived fluid. Further decompression and cooling to ∼720 °C, 0.7–1.0 GPa associated with limited fluid influx is documented by the formation of orthopyroxene-spinel-amphibole symplectites around garnet.

Zircon separated from this garnet peridotite exhibits two distinct zones. Domain 1 displays polygonal oscillatory zoning and high trace element contents. It contains clinopyroxene and amphibole inclusions with the same composition as the same minerals formed during the spinel peridotite equilibration, indicating that this domain formed under sub-solidus conditions during decompression and influx of crustal fluids. Domain 2 has no zoning and much lower trace element contents. It replaces domain 1 and is likely related to zircon recrystallization during the formation of the symplectites. SHRIMP dating of the two domains yielded ages of 34.2 ± 0.2 and 32.9 ± 0.3 Ma, respectively, indicating fast exhumation of the peridotite within the spinel stability field. We suggest that the Duria garnet peridotite originates from the mantle wedge above the tertiary subduction of the European continental margin and that it was assembled to the country rock gneisses between 34 and 33 Ma.


Zircon Olivine Ilmenite Contrib Mineral Petrol Garnet Peridotite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Becker, H 1993Garnet peridotite and eclogite Sm–Nd mineral ages from the Lepontine dome (Swiss Alps): New evidence for Eocene high-pressure metamorphism in the central AlpsGeology21599602CrossRefGoogle Scholar
  2. Bingen, B, Austrheim, H, Whitehouse, M 2001Ilmenite as source for zirconium during high-grade metamorphism? Textural evidence from the Caledonides of Western Norway and implications for zircon geochronologyJ Petrol42355375CrossRefGoogle Scholar
  3. Brueckner, HK 1998Sinking intrusion model for the emplacement of garnet-bearing peridotites into continent collision orogensGeology26631634CrossRefGoogle Scholar
  4. Brenker, FE, Brey, GP 1997Reconstruction of the exhumation path of Alpe Arami peridotite body from depths exceeding 160 kmJ Metamorphic Geol15581592CrossRefGoogle Scholar
  5. Burri T, Berger A, Engi M (2005) Tertiary migmatites in the Central Alps: Regional distribution, field relations, conditions of formation, and tectonic implications. Schweiz Mineral Petrogr Mitt 85Google Scholar
  6. Butera, KM, Williams, IS, Blevin, PL, Simpson, CJ 2004Zircon U–Pb dating of Early Palaeozoic monzonitic intrusives from the Goonumbla area, New South WalesAust J Earth Sci48457464CrossRefGoogle Scholar
  7. Compston, W, Williams, IS, Meyer, C 1984U–Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobeJ Geophys Res89B525B534Google Scholar
  8. Eggins, SM, Rudnick, RL, McDonough, WF 1998The composition of peridotites and their minerals: a laser ablation ICP-MS studyEarth Planet Sci Lett1545371CrossRefGoogle Scholar
  9. Evans, BW, Trommsdorff, V 1978Petrogenesis of garnet lherzolite, Cima di Gagnone, Leponitine AlpsEarth Planet Sci Lett40333348CrossRefGoogle Scholar
  10. Froitzheim, N, Pleuger, J, Roller, S, Nagel, T 2003Exhumation of high- and ultrahigh-pressure metamorphic rocks by slab extractionGeology31925928CrossRefGoogle Scholar
  11. Fumagalli, P, Poli, S 2005Experimentally determined phase relations in hydrous peridotites to 6.5 GPa and their consequences on the dynamics of subduction zonesJ Petrol46555578CrossRefGoogle Scholar
  12. Fumasoli MW (1974) Geologie des Gebietes nördlich und südlich der Jorio-Tonale-Linie im Westen von Gravedona (Como, Italia). PhD Thesis, ETH, ZürichGoogle Scholar
  13. Gebauer D (1996) A P–T-t-path for an (ultra?-)high-pressure ultramafic/mafic rock-association and its felsic country-rocks based on SHRIMP-dating of magmatic and metamorphic zircon domains. Example: Alpe Arami (Central Swiss Alps). In: Basu A, Hart SR (eds) Earth processes: reading the isotopic code. American Geophysical Union, Washington DC, pp 309–328Google Scholar
  14. Gebauer, D, Schertl, H-P, Brix, M, Schreyer, W 199735 Ma old ultrahigh-pressure metamorphism and evidence for very rapid exhumation in the Dora Maira Massif, Western AlpsLithos41524CrossRefGoogle Scholar
  15. Gerya, TV, Stöckhert, B, Perchuck, AL 2002Exhumation of high-pressure metamorphic rocks in a subduction channel: a numerical simulationTectonics2110561070CrossRefGoogle Scholar
  16. Gómez-Pugnaire, MT, Galindo-Zaldívar, J, Rubatto, D, Gonzalez-Lodeiro, F, López Sánchez-Vizcaíno, V, Jabaloy, A 2004A reinterpretation of the Nevado-Filábride and Alpujárride complexes (Betic Cordillera): field, petrography and U–Pb ages from orthogneisses (western Sierra Nevada, S Spain)Schweiz Mineral Petrogr Mitt84303322Google Scholar
  17. Hansmann, W 1996Age determinations on the Tertiary Masino-Bregaglia (Bergell) intrusives (Italy, Switzerland): a reviewSchweiz Mineral Petrogr Mitt76421452Google Scholar
  18. Heinrich, CA 1982Kyanite-eclogite to amphibolite facies evolution of hydrous mafic and pelitic rocks, Adula nappe, Central AlpsContrib Mineral Petrol813038CrossRefGoogle Scholar
  19. Heinrich, CA 1986Eclogite facies regional metamorphism of hydrous mafic rocks in the Central Alpine Adula nappeJ Petrol27123154Google Scholar
  20. Hoskin, PWO, Black, LP 2000Metamorphic zircon formation by solid-state recrystallization of protolith igneous zirconJ Metamorphic Geol18423439CrossRefGoogle Scholar
  21. Hunziker JC, Desmond J, Hurford AJ (1992) Thirty-two years of geochronological work in the Central and Western Alps: a review on seven maps. Mémoires de Géologie (Lausanne) 13: 59 ppGoogle Scholar
  22. Liati, A, Gebauer, D 2003Geochronological contraints for the time of metamorphism in the Gruf Complex (Central Alps) and implications for the Adula-Cima Lunga nappe systemSchweiz Mineral Petrogr Mitt83159172Google Scholar
  23. López Sánchez-Vizcaíno, V, Rubatto, D, Gómez-Pugnaire, MT, Trommsdorff, V, Müntener, O 2001Middle Miocene HP metamorphism and fast exhumation of the Nevado Filabride Complex, SE SpainTerra Nova13327332CrossRefGoogle Scholar
  24. Ludwig, KR 2000Isoplot/Ex version 2.4. A geochronological toolkit for Microsoft Excel. 1aBerkeley Geochronological Centre Spec PubBerkeleyGoogle Scholar
  25. McDonough, WF, Sun, SS 1995The composition of the EarthChem Geol120223253CrossRefGoogle Scholar
  26. Möckel, JR 1969Structural geology of the garnet peridotite of Alpe Arami (Ticino, Switzerland)Leidse Geol Med4261130Google Scholar
  27. Nagel, T, de Capitani, C, Frey, M, Froitzheim, N, Stünitz, H, Schmid, SM 2002Structural and metamorphic evolution during rapid exhumation in the Lepontine dome (southern Simano and Adula nappes, Central Alps, Switzerland)Eclogae Geol Helv95301321Google Scholar
  28. Niida, K, Green, DH 1999Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditionsContrib Mineral Petrol1351840CrossRefGoogle Scholar
  29. Nimis, P, Morten, L 2000P–T evolution of ‘crustal’ garnet peridotites and included pyroxenites from Nonsberg area (upper Austroalpine), NE Italy: from the wedge to the slabJ Geodyn3093115CrossRefGoogle Scholar
  30. Nimis, P, Trommsdorff, V 2001Revised thermobarometry of Alpe Arami and other garnet peridotites from the Central AlpsJ Petrol42103115CrossRefGoogle Scholar
  31. Pfiffner M (1999) Genese der hochdruckmetamorphen ozeanischen Abfolge der Cima Lunga-Einheit (Zentralalpen). PhD Thesis, ETH, Zurich, 247 ppGoogle Scholar
  32. Pfiffner, M, Trommsdorff, V 1998The high-pressure ultramafic-mafic-carbonate suite of Cima Lunga-Adula, Central Alps: excursion to Cima di Gagnone and Alpe AramiSchweiz Mineral Petrogr Mitt78337354Google Scholar
  33. Rampone, E, Morten, L 2001Records of crustal metasomatism in the garnet peridotites of the Ulten zone (Upper Austroalpine, Eastern Alps)J Petrol42207219CrossRefGoogle Scholar
  34. Risold AC (2001) Formation of oxide inclusions in olivine from garnet peridotites (Central Alps). PhD Thesis, ETH, Zürich, 128 ppGoogle Scholar
  35. Rubatto, D 2002Zircon trace element geochemistry: distribution coefficients and the link between U–Pb ages and metamorphismChem Geol184123138CrossRefGoogle Scholar
  36. Rubatto, D, Gebauer, D, Fanning, M 1998Jurassic formation and Eocene subduction of the Zermatt – Saas-Fee ophiolites: implications for the geodynamic evolution of the Central and Western AlpsContrib Mineral Petrol132269287CrossRefGoogle Scholar
  37. Rubatto, D, Hermann, J 2001Exhumation as fast as subduction?Geology2936CrossRefGoogle Scholar
  38. Scambelluri, M, Hermann, J, Morten, L, Rampone, E 2006Melt-versus fluid-induced metasomatism in spinel to garnet wedge peridotites (Ulten Zone, Eastern Italian Alps): clues from trace element and Li abundancesContrib Mineral Petrol151372394CrossRefGoogle Scholar
  39. Sun, SS, McDonough, WF 1989Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processesSanders, ADNorry, MJ eds. Magmatism in the ocean basinsGeol Soc Spec PublLondon313345Google Scholar
  40. Trommsdorff, V 1990Metamorphism and Tectonics in the Central Alps: The Alpine lithospheric mélange of Cima Lunga and AdulaMem Soc Geol It453949Google Scholar
  41. Trommsdorff, V, Hermann, J, Müntener, O, Pfiffner, M, Risold, A-C 2000Geodynamic cycles of subcontinental lithosphere in the Central Alps and the Arami enigmaJ Geodyn307092CrossRefGoogle Scholar
  42. Trümpy, R 1980Geology of Switzerland, a guide bookPart A Wepf & Co.BaselGoogle Scholar
  43. Tumiati, S, Thöni, M, Nimis, P, Martin, S, Mair, V 2003Mantle-crust interactions during Variscan subduction in the Eastern Alps (Nonsberg-Ulten zone): geochronology and new petrological constraintsEarth Planet Sci Lett210509526CrossRefGoogle Scholar
  44. von Blanckenburg, F 1992Combined high-precision chronometry and geochemical tracing using accessory minerals: applied to the Central-Alpine Bergell intrusion (central Europe)Chem Geol1001940CrossRefGoogle Scholar
  45. von Blanckenburg, F, Davies, JH 1995Slab break-off: a model for syncollisional magmatism and tectonics in the AlpsTectonics14120131CrossRefGoogle Scholar
  46. Watson, EB, Harrison, MT 1983Zircon saturation revisited: temperature and composition effects in a variety of crustal magma typesEarth Planet Sci Lett64295304CrossRefGoogle Scholar
  47. Watson, EB, Harrison, TM 2005Zircon thermometer reveals minimum melting conditions on earliest EarthScience308841844CrossRefGoogle Scholar
  48. Workman, RK, Hart, SR 2005Major and trace element composition of depleted MORB mantle (DMM)Earth Planet Sci Lett2315372CrossRefGoogle Scholar
  49. Zhang, RY, Yang, JS, Wooden, JL, Liou, JG, Li, TF 2005U–Pb SHRIMP geochronology of zircon in garnet peridotite from the Sulu UHP terrane, China: implications for mantle metasomatism and subduction-zone UHP metamorphismEarth Planet Sci Lett237729743CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • J. Hermann
    • 1
  • D. Rubatto
    • 1
  • V. Trommsdorff
    • 2
  1. 1.Research School of Earth Sciences, The Australian National UniversityCanberraAustralia
  2. 2.Institute for Mineralogy and Petrography, ETH-ZürichZürichSwitzerland

Personalised recommendations