Mineralogy and Petrology

, Volume 89, Issue 3–4, pp 133–158 | Cite as

The origin of rutile-ilmenite aggregates (“nigrine”) in alluvial-fluvial placers of the Hagendorf pegmatite province, NE Bavaria, Germany

  • H. G. Dill
  • F. Melcher
  • M. Füßl
  • B. Weber


Titanium placer deposits occur in alluvial-fluvial drainage systems which dissect Moldanubian gneisses intruded by Late Variscan pegmatites (Hagendorf province) in southern Germany. Based upon their texture (zonation, exsolution lamellae, intergrowth), microchemical data (Nb, Cr, Ta, V, Fe, W, Sn) and mineral inclusions, two major grain types of intergrown rutile and ilmenite have been established. Grains of type A are always zoned and consist of rutile cores enveloped by ilmenite containing small inclusions of wolframite. A core-rim transition zone is characterized by complex relations of rutile and ilmenite, with rutile lamellae being rich in Nb, V and Fe. Types B1 and B2 aggregates consist of ilmenite with lamellae of niobian rutile and/or ilmenorutile, and additionally have inclusions of ferrocolumbite, pyrochlore, betafite, sphalerite, pyrrhotite and Fe oxides. Such grain types featuring an intimate intergrowth of rutile and ilmenite were called nigrine. Type-C grains are quite similar in their morphological appearance but consist of W-enriched rutile devoid of mineral inclusions and reaction products. Pseudorutile and leucoxene replacing minerals of the nigrine aggregates are presumably caused by supergene alteration under fluctuating redox conditions. Phosphate and aluminum remobilized by supergene processes led to the formation of hydrous Ti-rich phases containing Al, P and Fe. High Nb and W concentrations in nigrine aggregates and in rutile type C may be taken as a marker for highly differentiated granites or pegmatites. This has implications for both, heavy-mineral-based provenance analysis and stream sediment exploration.


Rutile Quartz Vein Heavy Mineral Mineral Inclusion Placer Deposit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aleksandrov, VB 1963Isomorphism of cations in titaniferous tantalo-niobates of composition AB2X6 Dokl Akad Nauk153672675English translation 129–131Google Scholar
  2. Anand, RR, Gilkes, RJ 1985Some alumina and silica in weathered ilmenite grains is present in clay minerals – a response to Frost et al. (1983)Mineral Mag49141145CrossRefGoogle Scholar
  3. Bloomfield, K 1958The geology of the Port Herald areaNyasaland Protectorate Geological Survey Department Bulletin9176Google Scholar
  4. Brenan, M, Shaw, HF, Phinney, DL, Ryerson, FJ 1994Rutile-aqueous fluid partitioning of Nb, Ta, H, Zr, U and Th: implications for high field strength element depletions in island-arc basaltsEarth Planet Sci Lett128327339CrossRefGoogle Scholar
  5. Černy, P 1992Geochemical and petrogenetic features of mineralization in rare-element granitic pegmatites in the light of current researchAppl Geochem7393416CrossRefGoogle Scholar
  6. Černy, P, Ercit, TS 1985Some recent advances in the mineralogy and geochemistry of Nb and Ta in rare-element granitic pegmatitesBull Minéral108499532Google Scholar
  7. Černy, P, Chapman, R, Simmons, WB, Chackowsky, E 1999Niobian rutile from the McGuire granitic pegmatite, Park County, Colorado: Solid solution, exsolution, and oxidationAmer Mineral84754763Google Scholar
  8. Černy, P, Novák, M, Chapman, R, Masau, M 2000Two-stage exsolution of a titanium (Sc, Fe3+)(Nb,Ta)O4 phase in Norwegian niobian rutileCan Mineral38907913Google Scholar
  9. Černy, P, Paul, BJ, Hawthorne, FC, Chapman, R 1981A niobian rutile-disordered columbite intergrowth from the Huron Claim pegmatite, southeastern ManitobaCan Mineral19541548Google Scholar
  10. Chernet, T 1999aApplied mineralogical studies of the Koivusaarenneva ilmenite deposit, Kälviä, Western Finland, with special emphasis on the altered part of the oreChron Rech Min5351928Google Scholar
  11. Chernet, T 1999bEffect of mineralogy and texture in the TiO2 pigment production process of the Tellnes ilmenite concentrateMineral Petrol672132CrossRefGoogle Scholar
  12. Clark (1993) Hey’s mineral index. Mineral species, varieties and synonyms, 3rd edn. Chapman & HallGoogle Scholar
  13. Coakley, GJ, Mobbs, PM 2001The mineral industry of Malawi. Mineral industries of Africa and the Middle East, US GeolSurvey Minerals Yearbook1998–200329.129.2Google Scholar
  14. Dill, HG 1985Die Vererzung am Westrand der Böhmischen Masse. – Metallogenese in einer ensialischen OrogenzoneGeol JbD 733461Google Scholar
  15. Dill, HG 1989Metallogenetic and geodynamic evolution in the Central European Variscides – A pre-well site study for the German Continental Deep Drilling ProgrammeOre Geol Rev4279304CrossRefGoogle Scholar
  16. Dill, HG 1995Heavy mineral response to the progradation of an alluvial fan: implication concerning unroofing of source area, chemical weathering, and paleo-relief (Upper Cretaceous Parkstein fan complex/SE Germany)Sed Geol953956CrossRefGoogle Scholar
  17. Dill, HG 1998A review of heavy minerals in clastic sediments with case studies from the alluvial-fan through the nearshore-marine environmentsEarth Sci Rev45103132CrossRefGoogle Scholar
  18. Dill, HG 2001The geology of aluminium phosphates and sulphates of the alunite supergoup: A reviewEarth Sci Rev532593CrossRefGoogle Scholar
  19. Drew, LJ, Qingrun, M, Weijun, S 1990The Bayan Obo iron – rare earth – niobium deposits, Inner Mongolia, ChinaLithos264665CrossRefGoogle Scholar
  20. Droop, GTR 1987A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analysis using stoichiometric criteriaMineral Mag51431435CrossRefGoogle Scholar
  21. Forster A (1965) Erläuterungen zur Geologischen Karte von Bayern 1:25000 Blatt Vohenstrauß/Frankenreuth. GLA München, 174 ppGoogle Scholar
  22. Forster, A, Kummer, R 1974The pegmatites in the area of Pleystein-Hagendorf/North Eastern BavariaFortschr Mineral528999Google Scholar
  23. Frost, MT, Grey, IE, Harrowfield, IR, Mason, K 1983The dependence of alumina and silica contents on the extent of alteration of weathered ilmenites from Western AustraliaMineral Mag47201208CrossRefGoogle Scholar
  24. Grey, IE, Watts, JA, Bayliss, P 1994Mineralogical nomenclature: pseudorutile revalidated and neotype givenMineral Mag58597600CrossRefGoogle Scholar
  25. Hassan, WF 1994Geochemistry and mineralogy of Ta-Nb rutile from Peninsular MalaysiaJ Southeast Asian Earth Sci101123CrossRefGoogle Scholar
  26. Hogarth, D 1977Classification and nomenclature of pyrochlore groupAmer Mineral62403410Google Scholar
  27. Jakob, H 1979Neue Scheelit-Vorkommen in NordostbayernDer Aufschluss30187192Google Scholar
  28. Klemme, S, Prowatke, S, Hametner, K, Günther, D 2005Partitioning of trace elements between rutile and silicate melts: implications for subduction zonesGeochim Cosmochim Acta6923612371CrossRefGoogle Scholar
  29. Linnen, RL, Keppler, H 1997Columbite solubility in granitic melts: Consequences for the enrichment and fractionation of Nb and Ta in the Earth’s crustContrib Mineral Petrol128213227CrossRefGoogle Scholar
  30. Morton, AC 1984Stability of detrital HM in Tertiary sandstones from the North Sea basinClay Miner19287308CrossRefGoogle Scholar
  31. Morton AC (1985) Heavy-minerals in provenance studies. In: Zuffa GG (ed), Provenance of arenites. NATO ASI Ser C 148: 249–277Google Scholar
  32. Mücke, A 1987Sekundäre Phosphatmineralien (Perloffit, Brasilianit, Mineralien der Kingsmountit-Gruppe) sowie Brochantit und die Zwieselit-Muschketoffit-Stipnomelan-Pyrosmalith-Paragenese der 115-m-Sohle des Hagendorfer PegmatitsAufschluss38528Google Scholar
  33. Mücke, A 2000Die Erzmineralien und deren Paragenesen im Pegmatit von Hagendorf-Süd, OberpfalzAufschluss511124Google Scholar
  34. Mücke, A, Keck, E, Haase, J 1990Die genetische Entwicklung des Pegmatits von Hagendorf-Süd/OberpfalzAufschluss413351Google Scholar
  35. Mücke, A, Bhadra Chaudhuri, JN 1991The continuous alteration of ilmenite through pseudorutile to leucoxeneOre Geol Rev62544CrossRefGoogle Scholar
  36. Nickel E, Nichols M (2004) Mineral names, redefinitions & discreditations passed by the CNMMN of the IMA.
  37. Propach, G 1969Über Ilmenit und Rutil als Einschlüsse im Biotit eines redwitzitischen GabbrosGeol Bavarica60150155Google Scholar
  38. Ramdohr, P 1975Die Erzminerale und ihre VerwachsungenAkademie-VerlagBerlin1277Google Scholar
  39. Raufuss, W 1973Struktur, Schwermineralführung, Genese und Bergbau der sedimentären Rutil-Lagerstätten in Sierra Leone (Westafrika)Geol Jb D5152Google Scholar
  40. Sardi, FG 2003Composición química de la betafita, ilmenita, rutilo y rabdofano del yacimiento W-Mo ≪Badillo≫, Angulos, ArgentinaRevista de la asociación geológica argentina58118Google Scholar
  41. Siebel, W, Ulrich Blaha, U, Chen, F, Rohrmüller, J 2005Geochronology and geochemistry of a dyke-host rock association and implications for the formation of the Bavarian Pfahl shear zone, Bohemian MassifInt J Earth Sci94823CrossRefGoogle Scholar
  42. Strübel, G, Zimmer, SH 1982Lexikon der MineralogieEnke VerlagStuttgartGoogle Scholar
  43. Strunz, H, Forster, A, Tennyson, Ch 1975Die Pegmatite in der nördlichen OberpfalzAufschluss Sonderband26117189Google Scholar
  44. Strunz, V 1961Nigrinfunde bei PleysteinAufschluss196130Google Scholar
  45. Tennyson, C 1981Zur Mineralogie der Pegmatite des Bayerischen WaldesAufschluss324973Google Scholar
  46. Teuscher, EO, Weinelt, W 1972Die Metallogenese im Raum Spessart-Fichtelgebirge-Oberpfälzer Wald-Bayerischer WaldGeol Bavarica65573Google Scholar
  47. Uebel, PJ 1975Platznahme und Genese des Pegmatits von Hagendorf-SüdN Jahrb Mineral Mh1975318332Google Scholar
  48. Xiong, XL, Adam, J, Green, TH 2005Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesisChem Geol218339359CrossRefGoogle Scholar
  49. Zack, T, Kronz, A, Foley, SF, Rivers, T 2002Trace element abundances in rutiles from eclogites and associated garnet mica schistsChem Geol18497122CrossRefGoogle Scholar
  50. Zack, T, von Eynatten, H, Kronz, A 2004Rutile geochemistry and its potential use in quantitative provenance studiesSed Geol1713758CrossRefGoogle Scholar
  51. Zhao, DG, Essene, EJ, Zhang, YX 1998An oxygen barometer for rutile-ilmenite assemblages: oxidation state of metasomatic agents in the mantleEarth Planet Sci Lett1662737Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • H. G. Dill
    • 1
  • F. Melcher
    • 1
  • M. Füßl
    • 1
  • B. Weber
    • 1
  1. 1.Federal Institute for Geosciences and Natural ResourcesHannoverGermany

Personalised recommendations