Mineralogy and Petrology

, 88:479 | Cite as

Genesis of carbonate aggregates in lamprophyres from the northeastern Transdanubian Central Range, Hungary: Magmatic or hydrothermal origin?

  • T. Azbej
  • C. Szabó
  • R. J. Bodnar
  • G. Dobosi
Article

Summary

Carbonate aggregates in Late Cretaceous lamprophyre dikes of the northeastern Transdanubian Central Range (TCR) in Northwest Hungary have been classified into three genetic groups. Type-I dolomite + calcite ± magnesite aggregates have petrographic and geochemical features similar to ocelli described by other workers. Fluid inclusions in Type-I aggregates homogenize between 77 and 204 °C and are of hydrothermal origin. Type-II aggregates are characterized by a polygonal shape and are mostly dolomite. Based on their shape and primary fluid inclusions which homogenize between 95 and 172 °C, these carbonate aggregates are interpreted to fill vugs produced by the dissolution of olivine phenocrysts. Type-III carbonate aggregates show an irregular to polygonal shape and distinct compositional zonation and contain secondary aqueous fluid inclusions. Homogenization temperatures of fluid inclusions are below 104 °C, and zonation patterns suggest partial recrystallization. These carbonate aggregates are most likely xenoliths and xenocrysts from the wall rocks of the lamprophyre melt conduits.

References

  1. Andronikov, AV, Foley, SF 2001Trace element and Nd–Sr isotopic composition of ultramafic lamprophyres from the East Antarctic Beaver Lake areaChem Geol175291305CrossRefGoogle Scholar
  2. Azbej T (2002) Petrographic and geochemical study on carbonates in lamprophyres (in Hungarian). M.Sc. Thesis. Lithosphere Fluid Research Lab, Eötvös University, Budapest, p 102Google Scholar
  3. Azbej, T, Szabó, C, Bodnar, RJ, Dobosi, G 2003A new interpretation of the genesis of carbonate aggregates from lamprophyres in Hungary: Are ocelli of magmatic or hydrothermal origin?Acta Mineral Petrogr Abst. Ser, Szeged, Abstract Series212Google Scholar
  4. Baker, CK, Black, PM 1980Assimilation and metamorphism at a basalt-limestone contact, Tokatoka, New ZealandMineral Mag43797807Google Scholar
  5. Balog, A, Read, JF, Haas, J 1999Climate-controlled early dolomite, late Triassic cyclic platform carbonates, HungaryJ Sediment Res69267282Google Scholar
  6. Bence, AE, Albee, AL 1968Empirical correction factors for the electron microanalysis of silicates and oxidesJ Geol76382403Google Scholar
  7. Bodnar, RJ 1992Revised equation and table for determining the freezing point depression of H2O–NaCl solutionsGeochim Cosmochim Acta57638684Google Scholar
  8. Bodnar RJ (2003a) Introduction to fluid inclusions. In: Samson I, Anderson A, Marshall D (eds) Fluid Inclusions: Analysis and Interpretation, Mineral Assoc Canada, Short Course 32, Ottawa, pp 1–8Google Scholar
  9. Bodnar RJ (2003b) Reequilibration of fluid inclusions. In: Samson I, Anderson A, Marshall D (eds) Fluid Inclusions: Analysis and Interpretation, Mineral Assoc Canada, Short Course 32, Ottawa, pp 213–230Google Scholar
  10. Boettcher, AL, Robertson, JK, Wyllie, PJ 1980Studies in synthetic carbonatite systems; solidus relationships for CaO–MgO–CO2–H2O to 40 kbar and CaO–MgO–SiO2–CO2–H2O to 10 kbarJ Geophys Res8569376943CrossRefGoogle Scholar
  11. Cooper, AF 1979Petrology of ocellar lamprophyres from western Otago, New ZealandJ Petrol20139163Google Scholar
  12. Demény, A, Fórizs, I, Molnár, F 1994Stable isotope and chemical compositions of carbonate ocelli and veins in Mesozoic lamprophyres of HungaryEur J Mineral6679690Google Scholar
  13. Dunkl I (1991) Application of fission track methods in geochronological methods (in Hungarian). Ph.D. Thesis, Technical University of Miskolc, Miskolc, p 178Google Scholar
  14. Embey-Isztin, A, Dobosi, G, Noske-Fazekas, G, Árva-Sós, E 1989Petrology of a new basalt occurrence in HungaryMineral Petrol40183196CrossRefGoogle Scholar
  15. Esperanca, S, Holloway, JR 1987On the origin of some mica-lamprophyres; experimental evidence from a mafic minetteContrib Mineral Petrol95207216CrossRefGoogle Scholar
  16. Ferguson, J, Currie, KL 1971Evidence of liquid immiscibility in alkaline ultrabasic dikes at Callender Bay, OntarioJ Petrol12561585Google Scholar
  17. Fisler, DK, Cygan, RT 1999Diffusion of Ca and Mg in calciteAm Mineral8413921399Google Scholar
  18. Foley, SF 1984Liquid immiscibility and melt segregation in alkaline lamprophyres from LabradorLithos1717137CrossRefGoogle Scholar
  19. Goldstein RH (2003) Petrographic analysis of fluid inclusions. In: Samson I, Anderson A, Marshall D (eds) Fluid Inclusions: Analysis and Interpretation. Mineral Assoc Canada, Short Course 32, Ottawa, pp 9–55Google Scholar
  20. Goldstein RH, Reynolds TJ (1994) Systematics of fluid inclusions in diagenetic minerals. Society for Sedimentary Geology, Short Course 31, Ottawa, p 199Google Scholar
  21. Hamilton, DL 1961Nephelines as crystallization temperature indicatorsJ Geol69321329CrossRefGoogle Scholar
  22. Hamilton, DL, MacKenzie, WS 1960Nepheline solid solution in the system NaAlSiO4–KalSiO4–SiO2–H2OJ Petrol15672Google Scholar
  23. Hamilton, DL, Freenstone, IC, Dawson, JB, Donaldson, CH 1979Origin of carbonatites by liquid immiscibilityNature2795254CrossRefGoogle Scholar
  24. Horváth, I, Ódor, L 1984Alkaline ultrabasic rocks and associated silicocarbonatites in the NE part of the Transdanubian Mts. (Hungary)Mineral Slov16115119Google Scholar
  25. Horváth I, Daridáné TM, Ódor L (1983) Magnesite bearing dolomitic carbonatite dike rocks from the Velence Mountains (in Hungarian). Magy Áll Földt Int Évi Jel 1981-ről, 41–44Google Scholar
  26. Joesten, R 1977Mineralogical and chemical evolution of contaminated igneous rocks at a gabbro-limestone contact, Christmas Mountains, Big Bend region, TexasGeol Soc Am Bull8815151529CrossRefGoogle Scholar
  27. Joesten R, Hill J, Van-Horn SR (1994) Limestone assimilation and clinopyroxene production along the contacts of a 9 meter alkali olivine basalt dike. Geol Soc Am, Abstracts with Programs, 26, Killala Bay, Ireland, p 476Google Scholar
  28. Kázmér M, Szabó C (1989) Late Cretaceous lamprophyre dikes in the hinterland of the Alpine deformation front. EUG-V, Terra abstract, 4, Strasbourg, p 177Google Scholar
  29. Kubovics I, Szabó C (1988) Geochemical, petrologic and mineralogical study on alkali mafic and ultramafic dike rocks from Alcsutdoboz-2 drill hole (in Hungarian). Magy Áll Földt Int Évk LXV: 335–356Google Scholar
  30. Kubovics, I, Gál-Sólymos, K, Szabó, C 1985Petrology and geochemistry of ultramafic xenoliths in mafic rocks of Hungary and Burgenland (Austria)Geol Carpathica36433450Google Scholar
  31. Kubovics, I, Szabó, C, Gál-Sólymos, K 1989A new occurrence of lamprophyre in the Buda Mountains, HungaryActa Geol Hung32149168Google Scholar
  32. Kubovics, I, Szabó, C, Harangi, Sz, Józsa, S 1990Petrology and petrochemistry of Mesozoic magmatic suites in Hungary and the adjacent areas – an overviewActa Geodaet Geophys Mont Hung25345371Google Scholar
  33. Montel, JM, Weisbrod, A 1986Characteristics and evolution of “vaugneritic magmas”; an analytical and experimental approach, on the example of the Cevennes Medianes (French Massif Central)Bull Mineral109575587Google Scholar
  34. Nédli, Z, M. Tóth, T 2003Petrography and mineral chemistry of rhönite in ocelli of alkali basalt from Villány Mts., SW-HungaryActa Mineral-Petrogr445156Google Scholar
  35. Nemec, D 1977Differentiation of lamprophyre magmaKrystalinikum137387Google Scholar
  36. Owens, BE 2000High-temperature contact metamorphism of calc-silicate xenoliths in the Kiglapait Intrusion, LabradorAm Mineral8515951605Google Scholar
  37. Phillips, WJ 1973Interpretation of crystalline spheroidal structures in igneous rocksLithos6235244CrossRefGoogle Scholar
  38. Philpotts, AR 1990Principles of Igneous and Metamorphic PetrologyPrentice HallEnglewood Cliffs, New Jersey498Google Scholar
  39. Philpotts AR, Hodgson CJ (1968) Role of liquid immiscibility in alkaline rock genesis. XXIII. Int Geol Congr 2, pp 175–188Google Scholar
  40. Rock, NMS 1991LamprophyresBlackie and SonGlasgow/London/New York285Google Scholar
  41. Szabó, C 1985Xenoliths from Cretaceous lamprophyre of Alcsútdoboz-2. borehole, Transdanubian Central Mountains, HungaryActa Mineral-Petrogr273950Google Scholar
  42. Szabó, C, Kubovics, I, Molnár, Z 1993Alkaline lamprophyre and related dike rocks in NE Transdanubia, Hungary: The Alcsutdoboz-2 (AD-2) boreholeMineral Petrol47127148CrossRefGoogle Scholar
  43. Vichi, G, Stoppa, F, Wall, F 2005The carbonate fraction in carbonatitic Italian lamprophyresLithos85154170CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • T. Azbej
    • 1
    • 2
  • C. Szabó
    • 1
  • R. J. Bodnar
    • 2
  • G. Dobosi
    • 3
  1. 1.Lithosphere Fluid Research Laboratory, Department of Petrology and GeochemistryEötvös UniversityBudapestHungary
  2. 2.Fluids Research Laboratory, Department of GeosciencesVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  3. 3.Institute for Geochemical ResearchHungarian Academy of SciencesBudapestHungary

Personalised recommendations