Mineralogy and Petrology

, Volume 86, Issue 3–4, pp 253–276 | Cite as

Kinematic and rheological model of exhumation of high pressure granulites in the Variscan orogenic root: example of the Blanský les granulite, Bohemian Massif, Czech Republic

  • J. Franěk
  • K. Schulmann
  • O. Lexa


A large-scale relict domain of granulite facies deformation fabrics has been identified within the Blanský les granulite body. The granulite facies mylonitic fabric is discordant to the dominant amphibolite facies structures of the surrounding retrograde granulite. The complex geometry of retrograde amphibolite facies fabric indicates a large-scale fold-like structure, which is interpreted to be a result of either crustal-scale buckling of an already exhumed granulite sheet or active rotation of a rigid granulite facies ellipsoidal domain in kinematic continuity with the regional amphibolite facies deformation. We argue that both concepts allow similar restoration of the original granulite facies fabrics prior to the amphibolite facies deformation and “folding”. The geometry of the granulite facies foliations coincides with the earliest fabrics in the nearby mid-crustal units suggesting complete mechanical coupling between the deep lower crust and the mid-crustal levels during the vertical movements of crustal materials. Microstructures indicate grain-size sensitive flow enhanced by the presence of silicate melts at deep crustal levels and a beginning of an exhumation process of low viscosity granulites through a vertical channel. The amphibolite facies fabrics developed at middle crustal levels and their microstructures indicate significant hardening of feldspar-made rigid skeleton of the retrograde granulite. Increase in the strength of the granulite allowed an active buckling or a rigid body rotation of the granulite sheet, which acted as a strong layer inside the weaker metasediments.


Bohemian Massif Crustal Level Rigid Body Rotation Granulite Facies High Pressure Granulite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aftalion, M, Bowes, DR, Vrána, S 1989Early carboniferous U–Pb zircon age for garnetiferous, perpotassic granulites, Blanský les massif, Czechoslovakia.N Jb Mineral Monatsh4145152Google Scholar
  2. Andrusov, D, Čorná, O 1976Über das Alter des Moldanubikum nach mikroflorischen Forschungen.Geol Pr Správy658189Google Scholar
  3. Baratoux, L, Lexa, O, Cosgrove, JW, Schulmann, K 2005The quantitative link between fold geometry, mineral fabric and mechanical anisotropy: as exemplified by the deformation of amphibolites across a regional metamorphic gradient.J Struct Geol27707730Google Scholar
  4. Behrmann, JH, Mainprice, D 1987Deformation mechanisms in a high-temperature quartz-feldspar mylonite: evidence for super-plastic flow in the lower crust.Tectonophysics140297305CrossRefGoogle Scholar
  5. Boullier, AM, Gueguen, Y 1975SP-mylonites; origin of some mylonites by superplastic flow.Contrib Mineral Petrol5093104CrossRefGoogle Scholar
  6. Burg, JP 1999Ductile structures and instabilities: their implication for Variscan tectonics in the Ardennes.Tectonophysics309125CrossRefGoogle Scholar
  7. Carswell, DA, O’Brien, PJ 1993Thermobarometry and geotectonic significance of high-pressure granulites: examples from the Moldanubian Zone of the Bohemian Massif in Lower Austria.J Petrol34427459Google Scholar
  8. Cooke, RA 2000High-pressure/temperature metamorphism in the St. Leonhard Granulite Massif, Austria: evidence from intermediate pyroxene-bearing granulites.Int J Earth Sci89631651CrossRefGoogle Scholar
  9. Dell’Angelo, LN, Tullis, J, Yund, RA 1987Transition from dislocation creep to melt-enhanced diffusion creep in fine-grained granitic aggregates.Tectonophysics139325332Google Scholar
  10. Dudek, A 1980The crystalline basement block of the Outer Carpathians in Moravia.Rozpr CS Akad Věd90185Google Scholar
  11. Finger, F, Steyer, HP 1995A tectonic model for the eastern Variscides: indications from a chemical study of amphibolites in the south-eastern Bohemian Massif, Austria.Geol Carpath46114Google Scholar
  12. Franke W (2000) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and kinematic evolution. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt. Geol Soc Lond, London, pp 35–63Google Scholar
  13. Fuchs, G 1971Zur Tektonik des östlichen Waldviertels (NÖ).Verh Geol B-A3424440Google Scholar
  14. Fuchs, G 1976Zur Entwicklung der Böhmischen Masse.Jb Geol B-A1194561Google Scholar
  15. Fuchs, G 1986Zur Diskussion um den Deckenbau der Böhmischen Masse.Jb Geol B-A1294149Google Scholar
  16. Handy, MR 1990The solid-state flow of polymineralic rocks.J Geophys Res Solid9586478661Google Scholar
  17. Harrison, TM, Duncan, I, MCDougall, I 1985Diffusion of Ar-40 in biotite – temperature, pressure and compositional effects.Geochim Cosmochim Acta4924612468CrossRefGoogle Scholar
  18. Huddleston, PJ 1973Fold morphology and some geometrical implications of theories of fold development.Tectonophysics16146Google Scholar
  19. Jakeš, P, Jelínek, E 1997Granulites of the Bohemian massif: a bag with two stories.J Czech Geol Soc4258Google Scholar
  20. Jensen, LN, Starkey, J 1985Plagioclase microfabrics in a ductile shear zone from the Jotun Nappe, Norway.J Struct Geol7527539Google Scholar
  21. Kisters, AFM, Charlesworth, EG, Gibson, RL, Anhaeusser, CR 1996Steep structure formation in the Okiep copper district, South Africa: bulk inhomogeneous shortening of a high-grade metamorphic granite-gneiss sequence.J Struct Geol18735751Google Scholar
  22. Kodym, O 1972Multiphase deformation in the Blanský les granulite massif (South Bohemia).Krystalinikum991105Google Scholar
  23. Kodym O (1981) Vysvětlivky k základní geologické mapě ČSSR 1:25 000, list 32–212 NováVes. ÚÚG, PragueGoogle Scholar
  24. Kodym O (1985) Vysvětlivky k základní geologické mapě ČSSR 1:25 000, list 32–214 Křemže. ÚÚG, PragueGoogle Scholar
  25. Kossmat, F 1927Gliederung des varistischen Gebirgsbaues.Abh Sachs Geol Lande1139Google Scholar
  26. Košler, J, Kelley, SP, Vance, D, Svojtka, M 1999Independent dating of cooling and decompression of high grade rocks in the southern Bohemian Massif with Ar–Ar, Sm–Nd and U–Pb techniques.J C Abstr439Google Scholar
  27. Kretz, R 1983Symbols for rock forming minerals.Am Mineral68277279Google Scholar
  28. Kröner, A, O’Brien, PJ, Nemchin, AA, Pidgeon, RT 2000Zircon ages for high pressure granulites from South Bohemia, Czech Republic, and their connection to Carboniferous high temperature processes.Contrib Mineral Petrol138127142Google Scholar
  29. Lexa O (2003) Numerical approach in structural and microstructural analyses. Thesis, Charles University, PragueGoogle Scholar
  30. Lexa, O, Štípská, P, Schulmann, K, Baratoux, L, Kröner, A 2005Textural evidence for different durations of two metamorphic events of similar PT conditions.J Metamorph Geol23649666CrossRefGoogle Scholar
  31. Lisle RJ (1997) A fold classification scheme based on a polar plot if inverse layer thickness. In: Sengupta S (eds) Evolution of geological structures in micro- to macro-scales. Chapman & Hall, London, pp 323–339Google Scholar
  32. Lister, GS, Price, GP 1978Fabric development in a quartz-feldspar mylonite.Tectonophysics493778CrossRefGoogle Scholar
  33. Lobkowicz, M, Štědrá, V, Schulmann, K 1996Late-Variscan extensional collapse of the thickened Moldanubian crust in the southern Bohemia.J Czech Geol Soc39123138Google Scholar
  34. Marchildon, N, Brown, M 2003Spatial distribution of melt-bearing structures in anatectic rocks from Southern Brittany, France: implications for melt transfer at grain- to orogen-scale.Tectonophysics364215235CrossRefGoogle Scholar
  35. Marshall, DB, McLaren, AC 1977Deformation mechanisms in experimentally deformed plagioclase feldspars.Phys Chem Mineral1351370Google Scholar
  36. Martelat, JE, Schulmann, K, Lardeaux, JM, Nicollet, C, Cardon, H 1999Granulite microfabrics and deformation mechanisms in southern Madagascar.J Struct Geol21671687Google Scholar
  37. Matte, P, Maluski, H, Rajlich, P, Franke, W 1990Terrane boundaries in the Bohemian Massif: result of the large-scale Variscan shearing.Tectonophysics177151170Google Scholar
  38. Medaris, LG, Jelínek, E, Mísař, Z 1995Czech eclogites: terrane settings and implications for Variscan tectonic evolution of the Bohemian Massif.Eur J Mineral7728Google Scholar
  39. Montardi, Y, Mainprice, D 1987A transmission electron microscopy study of the natural plastic deformation of calcic plagioclases (An 68–70).B Mineral110114Google Scholar
  40. O’Brien, PJ, Carswell, DA 1993Tectonometamorphic evolution of the Bohemian Massif: evidence from high pressure metamorphic rocks.Geol Rundsch82531555Google Scholar
  41. O’Brien, PJ, Seifert, K 1992P–T–t paths as records of orogenic processes: examples and problems from the crystalline of the Bohemian Massif.Terra Nostra19925859Google Scholar
  42. O’Brien, PJ, Vrána, S 1995Eclogites with a short-lived granulite facies overprint in the Moldanubian zone, Czech Republic: petrology, geochemistry and diffusion modelling of garnet zoning.Geol Rundsch84473488Google Scholar
  43. Olsen, TS, Kohlstedt, DL 1984Analysis of dislocations in some naturally deformed plagioclase feldspars.Phys Chem Mineral11153160Google Scholar
  44. Paděra, K 1971Griquait mit rombischen Pyroxen (Granatwebsterit) von Borek bei Stupná bei Křemže in Bohmen.Tschermaks Mineral Petrogr Mitt165978Google Scholar
  45. Passchier CW, Trouw RAJ (1996) Microtectonics. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  46. Prince, CI, Kosler, J, Vance, D, Günther, D 2000Comparison of laser ablation ICP-MS and isotope dilution REE analyses – implications for Sm–Nd garnet geochronology.Chem Geol168255274CrossRefGoogle Scholar
  47. Racek, M, Štípská, P, Pitra, P, Schulmann, K, Lexa, O 2006Metamorphic record of burial and exhumation of orogenic lower and middle crust: a new tectonothermal model for the Drosendorf window (Bohemian Massif, Austria).Mineral Petrol86221251Google Scholar
  48. Rajlich, P, Synek, J, Sarbach, M, Schulmann, K 1986Hercynian-thrust related shear zones and deformation of the Varied Group on the contact of granulites/Southern Moldanubian, Bohemian Massif.Geol Rundsch75665683CrossRefGoogle Scholar
  49. Ramsay JG (1967) Folding and fracturing of rocks. Mc Graw Hill, New YorkGoogle Scholar
  50. Sawyer, EW 1999Criteria for the recognition of partial melting.Phys Chem Earth Pt A24269279Google Scholar
  51. Seyferth, M, Henk, A 2004Syn-convergent exhumation and lateral extrusion in continental collision zones – insights from three-dimensional numerical models.Tectonophysics382129CrossRefGoogle Scholar
  52. Schmid, SM, Casey, M 1986Complete fabric analysis of some commonly observed quartz c-axis patterns.AGU Geophys Monogr36263286Google Scholar
  53. Schmid, SM, Heilbronner, R, Stunitz, H 1999Deformation mechanisms in nature and experiment.Tectonophysics303VIIIXGoogle Scholar
  54. Schulmann, K, Kröner, A, Hegner, E, Wendt, I, Konopásek, J, Lexa, O, Štípská, P 2005Chronological constraints on the pre-orogenic history, burial and exhumation of deep-seated rocks along the eastern margin of the variscan orogen, Bohemian Massif, Czech Republic.Am J Sci305407448Google Scholar
  55. Stunitz, H, Fitz Gerald, JD, Tullis, J 2003Dislocation generation, slip systems, and dynamic recrystallization in experimentally deformed plagioclase single crystals.Tectonophysics372215233Google Scholar
  56. Suess, FE 1926Intrusionstektonik und Wandertektonik im variszischen Grundgebirge.BornträgerBerlin268Google Scholar
  57. Svojtka M (2001) Geochronologie a strukturní vývoj granulitů v jižní části moldanubika Českého masívu. Thesis, Charles University, PragueGoogle Scholar
  58. Svojtka, M, Košler, J, Venera, Z 2002Dating granulite-facies structures and the exhumation of lower crust in the Moldanubian Zone of the Bohemian Massif.Geol Rundsch91373385Google Scholar
  59. Šreinová, B, Šrein, V 1993Mineralogie a petrografie kinzigitů ze Lhenic a Ktiše v Jižních Čechách.B Min Petr Odd NM Pr14854Google Scholar
  60. Štípská, P, Powell, R 2005Does ternary feldspar constrain the metamorphic conditions of high-grade meta-igneous rocks? Evidence from orthopyroxene granulites, Bohemian Massif.J Metamorph Geol23627647Google Scholar
  61. Štípská P, Schulmann K, Höck V (2000) Complex metamorphic zonation of the Thaya dome: result of buckling and gravitational collapse of imbricated nappe sequence. In: Cosgrowe JW, Ameen MS (eds) Forced folds and fractures. Geol Soc Lond Spec Publ 169: 197–211Google Scholar
  62. Štípská, P, Schulmann, K, Kröner, A 2004Vertical extrusion and middle crustal spreading of omphacite granulite: a model of syn-convergent exhumation (Bohemian Massif, Czech Republic).J Metamorph Geol22179198Google Scholar
  63. Tikoff, B, Teyssier, C, Waters, C 2002Clutch tectonics and the partial attachment of lithospheric layers.EGU S Mueller Spec Publ193117Google Scholar
  64. Tollmann, A 1982Großräumiger variszischer Deckenbau im Moldanubikum und neue Gedanken zum Variszikum Europas.Geotekt Forsch64191Google Scholar
  65. Turner FJ, Weiss LE (1963) Structural analysis of metamorphic tectonites. McGraw Hill, New YorkGoogle Scholar
  66. Vrána, S 1979Polyphase shear folding and thrusting in the Moldanubicum of southern Bohemia.Věst Ústř Úst Geol547586Google Scholar
  67. Vrána, S 1989Perpotassic granulites from Southern Bohemia – a new rock-type derived from partial melting of crustal rocks under upper mantle conditions.Contrib Mineral Petrol103510522CrossRefGoogle Scholar
  68. Vrána S (1992) The moldanubian zone in southern Bohemia: polyphase evolution of imbricated crustal and upper mantle segments. In: Kukal Z (eds) P 1 Int C Boh Mass P. Czech Geol Surv, Prague, pp 331–336Google Scholar
  69. Vrána S (1997) Geology and petrology of the Moldanubian zone. In: Vrána S, Štědrá V (eds) Geological model of western Bohemia. Czech Geol Surv, Prague, pp 109–113Google Scholar
  70. Vrána, S, Šrámek, J 1999Geological interpretation of detailed gravity survey of the granulite complex in southern Bohemia and its structure.B Czech Geol Surv74261277Google Scholar
  71. Wendt, JI, Kröner, A, Fiala, J, Todt, W 1994U–Pb zircon and Sm–Nd dating of Moldanubian HP/HT granulites from South Bohemia, Czech Republic.J Geol Soc Lond1518390Google Scholar
  72. Wilson, G 1961The tectonic significance of small-scale structures, and their importance to the geologist in the field.Ann Soc Geol Belg84423595Google Scholar

Copyright information

© Springer-Verlag/Wien 2006

Authors and Affiliations

  • J. Franěk
    • 1
    • 2
  • K. Schulmann
    • 1
  • O. Lexa
    • 1
    • 2
  1. 1.Centre de Géochimie de Surface, UMR CNRS 7516StrasbourgFrance
  2. 2.Institute of Petrology and Structural GeologyPragueCzech Republic

Personalised recommendations