Mineralogy and Petrology

, Volume 86, Issue 3–4, pp 221–251 | Cite as

Metamorphic record of burial and exhumation of orogenic lower and middle crust: a new tectonothermal model for the Drosendorf window (Bohemian Massif, Austria)

  • M. Racek
  • P. Štípská
  • P. Pitra
  • K. Schulmann
  • O. Lexa
Article

Summary

A continuous, but attenuated section through orogenic lower and middle crust overthrust by a second lower-crustal complex was distinguished at the eastern margin of the Bohemian Massif. This indicates the existence of two lower-crustal “autochthonous” extrusions into middle crust that is not compatible with the model of “allochthonous” lower crustal klippen remaining after flat thrusting of the Gföhl nappe over large distances. The base of the lower crust is represented by a granulite body exhumed from c. 15 kbar and 800 °C. A hangingwall complex of layered amphibolites gradually passes into amphibolite bearing paragneisses (the Monotonous unit) and micaschists intercalated with marbles at the top (the Varied unit). The metamorphic grade and anatexis decreases upwards and the micaschists preserve a prograde path to c. 8 kbar and 700 °C. This sequence is overthrust by a second lower crustal strongly migmatitized complex, referred to as the Raabs complex, which is marked by an eclogite-bearing belt at the base. The garnet zoning of eclogite indicates burial from 10 kbar to min. 15 kbar. In all units, relics of a steep metamorphic fabric were identified, reworked by folding and a moderately west-dipping foliation. The conditions of 7–10 kbar and approximately 750 °C for the flat foliation were obtained in all units indicating that exhumation of the lower crust into a middle crustal level occurred earlier, probably during the development of steep fabrics. The intense flat fabric is interpreted as a result of thrusting of the whole assembly over the middle crustal Brunian indentor.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Büttner, S, Kruhl, JH 1997The evolution of a late-Variscan high-T/low-P region: the southeastern margin of the Bohemian Massif.Geol Rundsch862138Google Scholar
  2. Carswell, DA, O’Brien, PJ 1993Thermobarometry and geotectonic significance of high-pressure granulites: examples from the Moldanubian Zone of the Bohemian Massif in Lower Austria.J Petrol34427459Google Scholar
  3. Cooke, RA 2000High-pressure/temperature metamorphism in the St. Leonhard Granulite Massif, Austria: evidence from intermediate pyroxene-bearing granulites.Int J Earth Sci89631651CrossRefGoogle Scholar
  4. Cooke, RA, O’Brien, PJ 2001Resolving the relationship between high P–T rocks and gneisses in collisional terranes: an example from the Gföhl gneiss-granulite association in the Moldanubian Zone, Austria.Lithos583354CrossRefGoogle Scholar
  5. Cooke, RA, O’Brien, PJ, Carswell, DA 2000Garnet zoning and the identification of equilibrium mineral compositions in high-pressure-temperature granulites from the Moldanubian Zone, Austria.J Metamorph Geol18551569CrossRefGoogle Scholar
  6. Dudek, A 1960Krystalické břidlice a devon východně od Znojma.Sbor Ústř úst geol26101141Google Scholar
  7. Fiala, J, Matějovská, O, Vaňková, V 1987Moldanubian granulites: source material and petrogenetic considerations.Neues Jb Mineral Abh157133165Google Scholar
  8. Finger, F, Steyrer, HP 1995A tectonic model for the eastern Variscides: indications from a chemical study of amphibolites in the south-eastern Bohemian Massif, Austria.Geol Carpath46114Google Scholar
  9. Finger, F, von Quadt, A 1995U/Pb ages of zircons from a plagiogranite-gneiss in the south-eastern Bohemian Massif, Austria – further evidence for an important Early Paleozoic rifting episode in the Eastern Variscides.Schweiz Mineral Petrogr Mitt75265270Google Scholar
  10. Finger F, Hanžl P, Pin C, von Quadt A, Steyrer HP (2000a) The Brunovistulian: Avalonian Precambrian sequence at the eastern end of the Central European Variscides? In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt. Geol Socond Spec Pub 179: 103–112Google Scholar
  11. Finger, F, Tichomirowa, M, Pin, C, Hanžl, P 2000bRelics of an early-Panafrican metabasite-metarhyolite formation in the Brno Massif, Moravia, Czech Republic.Int J Earth Sci89328335CrossRefGoogle Scholar
  12. Franěk, J, Schulmann, K, Lexa, O 2006Kinematic and rheological model of exhumation of high-pressure granulites in the Variscan orogenic root: example of the Blanský les granulite, Bohemian Massif, Czech Republic.Mineral Petrol86253276Google Scholar
  13. Franke, W 1989Tectonostratigraphic units in the Variscan belt of central Europe.Geol Soc Am Spec Paper2306790Google Scholar
  14. Franke W (2000) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and kinematic evolution. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt. Geol Soc Lond Spec Publ 179: 35–63Google Scholar
  15. Friedl, G, von Quadt, A, Ochsner, A, Finger, F 1993Timing of the Variscan orogeny in the Southern Bohemian Massif (NE Austria) deduced from new U–Pb zircon and monazite dating.Terra Nova1235236Google Scholar
  16. Friedl, G, Cooke, R, Finger, F, McNaughton, NJ, Fletcher, I 2003U–Pb SHRIMP dating and trace element investigations on multiple zircons from a South-Bohemian granulite.J Czech Geol Soc4851Google Scholar
  17. Friedl, G, Finger, F, Paquette, J, Quadt, A, McNaughton, N, Fletcher, I 2004Pre-Variscan geological events in the Austrian part of the Bohemian Massif deduced from U–Pb zircon ages.Int J Earth Sci93802823CrossRefGoogle Scholar
  18. Fritz, H 1996Geodynamic and tectonic evolution of the southeastern Bohemian Massif: the Thaya section (Austria).Mineral Petrol58253258CrossRefGoogle Scholar
  19. Fritz, H, Neubauer, F 1993Kinematics of crustal stacking and dispersion in the south-eastern Bohemian Massif.Geol Rundsch82556565CrossRefGoogle Scholar
  20. Fritz, H, Dallmeyer, RD, Neubauer, F 1996Thick-skinned versus thin-skinned thrusting: rheology controlled thrust propagation in the Variscan collisional belt (the southeastern Bohemian Massif, Czech Republic – Austria).Tectonics1513891413CrossRefGoogle Scholar
  21. Fuchs, G 1971Zur Tektonik des östlichen Waldviertels (N.Ö.).Verh Geol B-A3424440Google Scholar
  22. Fuchs, G 1976Zur Entwicklung der Böhmischen Masse.Jb Geol B-A1194561Google Scholar
  23. Fuchs, G, Matura, A 1976Zur Geologie des Kristallins der südlichen Böhmischen Masse.Jb Geol B-A119143Google Scholar
  24. Gebauer, D, Friedl, G 1994A 1.38 Ga protolith age for the Dobra orthogneiss (Moldanubian zone of the southern Bohemian Massif, NE-Austria): evidence from ion-microprobe (SHRIMP) dating of zircon.J Czech Geol Soc393435Google Scholar
  25. Hartley, AJ, Otava, J 2001Sediment provenance and dispersal in a deep marine foreland basin: the Lower Carboniferous Culm Basin, Czech Republic.J Geol Soc158137150Google Scholar
  26. Höck, V 1975Mineralzonen in Metapeliten und Metapsammiten der Moravischen Zone in Niederösterreich.Mitt Geol Ges66–674960Google Scholar
  27. Holland, TJB, Powell, R 1998An internally consistent thermodynamic data set for phases of petrological interest.J Metamorph Geol16309343Google Scholar
  28. Holland, TJB, Powell, R 2003Activity-composition relations for phases in petrological calculations: an asymmetric multicomponent formulation.Contrib Mineral Petrol145492501CrossRefGoogle Scholar
  29. Janoušek, V, Finger, F, Roberts, MP, Frýda, J, Pin, C, Dolejš, D 2004Deciphering petrogenesis of deeply buried granites: whole-rock geochemical constraints on the origin of largely undepleted felsic granulites from the Moldanubian Zone of the Bohemian Massif.Trans Roy Soc Edinb Earth Sci95141159Google Scholar
  30. Kalvoda, J, Leichmann, J, Bábek, O, Melichar, R 2003Brunovistulian Terrane (Central Europe) and Istanbul Zone (NW Turkey): late Proterozoic and Paleozoic tectonostratigrapic development and paleogeography.Geol Carpath54139152Google Scholar
  31. Kober, L 1938Der Geologische Aufbau Österreichs.SpringerWien204Google Scholar
  32. Kolenovská, E, Schulmann, K, Klápová, H, Štípská, P 1999Tectonometamorphic evolution of the Moldanubian zone near Jemnice (South Moravia, Bohemian Massif).Beih Eur J Mineral119194Google Scholar
  33. Kröner, A, Wendt, I, Liew, TC, Compston, W, Todt, W, Fiala, J, Vaňková, V, Vaněk, J 1988U–Pb zircon and Sm–Nd model ages of high grade Moldanubian metasediments, Bohemian Massif, Czechoslovakia.Contrib Mineral Petrol99257266CrossRefGoogle Scholar
  34. Kröner, A, O’Brien, PJ, Nemchin, AA, Pidgeon, RT 2000aZircon ages for high pressure granulites from South Bohemia, Czech Republic, and their connection to Carboniferous high temperature processes.Contrib Mineral Petrol138127142Google Scholar
  35. Kröner A, Štípská P, Schulmann K, Jaeckel P (2000b) Chronological constraints on the pre-Variscan evolution of the northeastern margin of the Bohemian Massif, Czech Republic. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes; quantification and modelling in the Variscan Belt. Geol Soc Lond Spec Publ 179: 175–197Google Scholar
  36. Linner, M 1996Metamorphism and partial melting of paragneisses of the Monotonous Group, SE Moldanubicum (Austria).Mineral Petrol58215234CrossRefGoogle Scholar
  37. Matte, P 1991Accretionary history and crustal evolution of the Variscan belt in Western Europe.Tectonophysics196309337CrossRefGoogle Scholar
  38. Medaris, LG, Jelínek, E, Mísař, Z 1995Czech eclogites: Terrane settings and implications for Variscan tectonic evolution of the Bohemian Massif.Eur J Mineral7728Google Scholar
  39. Medaris, LG, Fournelle, JH, Ghent, ED, Jelínek, E, Mísař, Z 1998Prograde eclogite in the Gföhl Nappe, Czech Republic: new evidence on Variscan high-pressure metamorphism.J Metamorph Geol16563576CrossRefGoogle Scholar
  40. O’Brien, PJ 1997Garnet zoning and reaction textures in overprinted eclogites, Bohemian Massif, European Variscides: a record of their thermal history during exhumation.Lithos41119133Google Scholar
  41. O’Brien, PJ, Vrána, S 1995Eclogites with a short-lived granulite facies overprint in the Moldanubian Zone, Czech Republic: petrology, geochemistry and diffusion modelling of garnet zoning.Geol Rundsch84473488Google Scholar
  42. Owen, JV, Dostal, J 1996Prograde metamorphism and decompression of the Gföhl gneiss, Czech Republic.Lithos38259270CrossRefGoogle Scholar
  43. Petrakakis, K 1986Metamorphism of high-grade gneisses from the Moldanubian Zone, Austria, with particular reference to garnets.J Metamorph Geol4323344Google Scholar
  44. Petrakakis, K 1997Evolution of Moldanubian rocks in Austria: review and synthesis.J Metamorph Geol15203222CrossRefGoogle Scholar
  45. Pitra, P, Guiraud, M 1996Probable anticlockwise P–T evolution in extending crust: Hlinsko region, Bohemian Massif.J Metamorph Geol144960CrossRefGoogle Scholar
  46. Powell R, Downes J (1990) Garnet porphyroblast-bearing leucosomes in metapelites: mechanisms, phase diagrams, and an example from Borken Hill, Australia. In: Ashworth JR, Brown M (eds) High temperature metamorphism and crustal anatexis. The Mineralogical Society series. Unwin Hyman, London, pp 105–123Google Scholar
  47. Powell, R, Holland, T, Worley, B 1998Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC.J Metamorph Geol16577588CrossRefGoogle Scholar
  48. Scharbert, S, Batík, P 1980The age of the Thaya (Dyje) pluton.Verh Geol B-A3325331Google Scholar
  49. Schulmann, K 1990Fabric and kinematics study of the Bíteš orthogneiss (southwest Moravia): result of large-scale northeastward shearing parallel to the Moldanubian/Moravian boundary.Tectonopysics177229244Google Scholar
  50. Schulmann, K, Gayer, R 2000A model for a continental accretionary wedge developed by oblique collision: the NE Bohemian Massif.J Geol Soc157401416Google Scholar
  51. Schulmann, K, Ledru, P, Autran, A, Melka, R, Lardeaux, JM, Urban, M, Lobkowicz, M 1991Evolution of nappes in the eastern margin of the Bohemian Massif: a kinematic interpretation.Geol Rundsch807392CrossRefGoogle Scholar
  52. Schulmann, K, Melka, R, Lobkowicz, M, Ledru, P, Lardeaux, JM, Autran, A 1994Contrasting styles of deformation during progressive nappe stacking at the southeastern margin of the Bohemian Massif (Thaya Dome).J Struct Geol16355370Google Scholar
  53. Schulmann K, Lobkowicz M, Melka R, Fritz H (1995) Structure of the allochthonous Moravo-Silesian units. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-permian geology of Central and Eastern Europe. Springer, Berlin Heidelberg New York Tokyo, pp 530–540Google Scholar
  54. Schulmann, K, Kröner, A, Hegner, E, Wendt, I, Konopásek, J, Lexa, O, Štípská, P 2005Chronological constraints on the pre-orogenic history, burial and exhumation of deep-seated rocks along the eastern margin of the Variscan orogen, Bohemian Massif, Czech Republic.Am J Sci305407448Google Scholar
  55. Štípská, P, Powell, R 2005aDoes ternary feldspar constrain the metamorphic conditions of high-grade meta-igneous rocks? Evidence from orthopyroxene granulites, Bohemian Massif.J Metamorph Geol23627647Google Scholar
  56. Štípská, P, Powell, R 2005bConstraining the P–T path of a MORB-type eclogite using pseudosections, garnet zoning and garnet-clinopyroxene thermometry: an example from the Bohemian Massif.J Metamorph Geol23725743Google Scholar
  57. Štípská, P, Schulmann, K 1995Inverted metamorphic zonation in a basement-derived nappe sequence, eastern margin of the Bohemian Massif.Geol J30385413Google Scholar
  58. Štípská P, Schulmann K, Höck V (2000) Complex metamorphic zonation of the Thaya dome: result of buckling and gravitational collapse of an imbricated nappe sequence. In: Cosgrowe JW, Ameen MS (eds) Forced folds and fractures. Geol Soc Lond Spec Publ 169: 197–211Google Scholar
  59. Štípská, P, Schulmann, K, Kröner, A 2004Vertical extrusion and middle crustal spreading of omphacite granulite: a model of syn-convergent exhumation (Bohemian Massif, Czech Republic).J Metamorph Geol22179198Google Scholar
  60. Stüwe, K, Powell, R 1995PT Paths from modal proportions: application to the Koralm Complex, Eastern Alps.Contrib Mineral Petrol1198393CrossRefGoogle Scholar
  61. Suess, FE 1912Die Moravischen Fenster und ihre Beziehung zum Grundgebirge des Hohen Gesenkes.Österr Akad Wiss math-naturw Kl, Denkschr88541631Google Scholar
  62. Suess, FE 1918Bemerkungen zur neueren Literatur über die Moravischen Fenster.Mitt Geol Ges1171128Google Scholar
  63. Suess, FE 1926Intrusionstektonik und Wandertektonik im variszischen Grundgebirge.BornträgerBerlin268Google Scholar
  64. Suess FE, Gerhart H, Beck H (1925) Geologische Spezialkarte, Blatt Drosendorf, 1: 75 000. Geol B-A, WienGoogle Scholar
  65. Thiele, O 1976Zur Tektonik des Waldviertels in Niederösterreich (südliche Böhmische Masse).Nova Acta Leopoldina456782Google Scholar
  66. Thiele, O 1984Zum Deckenbau und Achsenplan des Moldanubikums der südlichen Böhmischen Masse (Österreich).Jb Geol B-A126513523Google Scholar
  67. Tollmann, A 1982Großräumiger variszischer Deckenbau im Moldanubikum und neue Gedanken zum Variszikum Europas.Geotekt Forsch64191Google Scholar
  68. van Breemen, O, Aftalion, M, Bowes, DR, Dudek, A, Mísař, Z, Povondra, P, Vrána, S 1982Geochronological studies of the Bohemian Massif, Czechoslovakia, and their significance in the evolution of Central Europe.Trans Roy Soc Edinb Earth Sci7389108Google Scholar
  69. Wei, CJ, Powell, R, Zhang, LF 2003Eclogites from the south Tianshan, NW China: petrological characteristic and calculated mineral equilibria in the Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O system.J Metamorph Geol21163179CrossRefGoogle Scholar
  70. White, RW, Powell, R 2002Melt loss and the preservation of granulite facies mineral assemblages.J Metamorph Geol20621632Google Scholar
  71. White, RW, Powell, R, Holland, TJB 2001Calculation of partial melting equilibria in the system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH).J Metamorph Geol19139153Google Scholar

Copyright information

© Springer-Verlag/Wien 2006

Authors and Affiliations

  • M. Racek
    • 1
    • 3
  • P. Štípská
    • 2
    • 4
  • P. Pitra
    • 3
  • K. Schulmann
    • 2
  • O. Lexa
    • 1
    • 2
  1. 1.Institute of Petrology and Structural Geology, Charles UniversityPrahaCzech Republic
  2. 2.Centre de Géochimie de Surface, UMR CNRS 7517StrasbourgFrance
  3. 3.Géosciences Rennes, UMR CNRS 6118, Université Rennes 1France
  4. 4.Czech Geological SurveyPragueCzech Republic

Personalised recommendations