Advertisement

Mineralogy and Petrology

, Volume 86, Issue 1–2, pp 29–44 | Cite as

In-situ U–Pb SIMS dating and trace element (EMPA) composition of zircon from a granodiorite porphyry in the Wushan copper deposit, China

  • X. Ding
  • S.-Y. Jiang
  • K.-D. Zhao
  • E. Nakamura
  • K. Kobayashi
  • P. Ni
  • L-X. Gu
  • Y.-H. Jiang
Article

Summary

Zircons from a granodiorite porphyry at the Wushan copper deposit in the Lower Changjiang Metallogenic Belt, east central China, were dated using a Cameca IMS 1270 secondary ion mass spectrometer (SIMS); their chemical compositions and Hf isotopes were analyzed using a JEOL JX A8800 electron microprobe (EMPA) and a Neptune LA-MC-ICP-MS, respectively. The U–Pb dating of zircon reveals two age groups for the granodiorite porphyry; i.e. 144.6 ± 3.9 Ma and 121.0 ± 2.5 Ma. Zircons of the two age populations display distinct chemical compositional characteristics with respect to UO2/HfO2 ratios, and show a negative correlation of (UO2 + Y2O3 + ThO2) and HfO2. The older age group of ∼145 Ma, defined by the majority of the zircons, is interpreted as the magmatic emplacement age, whereas the younger age group of ∼121 Ma is interpreted as rejuvenation due to subsequent thermal or hydrothermal events. Other interpretations such as presence of two distinct magmatic crystallization stages or inheritance of the older zircons are also discussed in the paper. The ∼145 Ma magmatism at Wushan is consistent with the ages of most of the granitods in the Lower Changjiang Metallogenic Belt. The Hf isotope composition of zircons (ɛHf = −2.1 and −7.0; TDM Hf ages = 0.87 and 1.05 Ga), together with other available geochemical and Sr–Nd isotope data suggest that the granodioritic magma was derived from mixing of juvenile mantle with older crustal material. Due to the close spatial and temporal relationship of the granodiorite porphyry and the skarn mineralization at Wushan, the magamatic hydrothermal mineralization likely took place between 145 Ma and 121 Ma, likely around 121 Ma.

Keywords

Zircon Y2O3 HfO2 ThO2 Hydrothermal Mineralization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blichert-Toft, J, Albarede, F 1997he Lu–Hf geochemistry of chondrites and the evolution of the mantle-crust system.Earth Planet Sci Lett148243258(Erratum: Earth Planet Sci Lett 154: 349)Google Scholar
  2. Chen, JF, Jahn, BM 1998Crustal evolution of southeastern China: Nd and Sr isotopic evidence.Tectonophysics284101103CrossRefGoogle Scholar
  3. Chen, JF, Zhou, TX, Li, XM, Foland, KA, Hang, CY, Lu, W 1993Sr and Nd isotopic constraints on source regions of the intermediate and acid intrusions from southern Anhui provinence.Geochemistry3261268(in Chinese, with English abstract)Google Scholar
  4. Chen, JF, Yan, J, Xie, Z, Xu, X, Xing, F 2001Nd and Sr isotopic compositions of igneous rocks from the Lower Yangtze region in eastern China: constraints on sources.Phys Chem Earth (A)26719731Google Scholar
  5. Connelly, JN 2000Degree of preservation of igneous zonation in zircon as a signpost for concordancy in U/Pb geochronology.Chem Geol1722539Google Scholar
  6. Dong, P, Wang, WB, Li, WD, Xie, HG 1995The Sr-isotopic geochemistry and the genesis of stratabound cupriferous pyrite orebodies, Wushan copper deposit, Jiangxi, East China.Volcanol Mineral Resour1694100(in Chinese, with English Abstract)Google Scholar
  7. Goolaerts, A, Mattielli, N, de Jong, J 2004Hf and Lu isotopic reference values for the zircon standard 91500 by MC-ICP-MS.Chem Geol20619CrossRefGoogle Scholar
  8. Griffin, WL, Pearson, NJ, Belousova, E, Jackson, SE, O’Reilly, SY, van Achterberg, E, Shee, SR 2000The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites.Geochim Cosmochim Acta64133147CrossRefGoogle Scholar
  9. Gu, L 1987The Mesozoic intrusives associated with the Carboniferous massive sulphide ore deposit in Wushan, Jiangxi province.Acta Petrol Sinica16476(in Chinese, with English Abstract)Google Scholar
  10. Gu, L, Xu, K 1984The middle Carboniferous marine volcanics and the origin of the bedded ores at Wushan, Jiangxi province.J Guilin College Geol491102(in Chinese, with English Abstract)Google Scholar
  11. Hansen, BT, Friderichsen, JD 1989The influence of recent Pb-loss on the interpretation of disturbed U–Pb systems in zircons from igneous rocks in East Greenland.Lithos23209223Google Scholar
  12. Huang, EB, Zhang, NT, Luo, ZS 1990The origin of Chengmenshan and Wushan copper deposits.Mineral Deposits9291308(in Chinese, with English abstract)Google Scholar
  13. Hoskin, PWO, Black, LP 2000Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon.J Metamorph Geol18423439CrossRefGoogle Scholar
  14. Ji SX, Wang WB, Xing WC, Xue YY, Yue WZ, Wu HR, Dai JY, Wei NY, Zhou HM (1990) The copper deposits of Northwestern Jiangxi. Geological Publishing House, Beijing (in Chinese, with English abstract)Google Scholar
  15. Kempe, U, Bombach, K, Matukov, D, Schlothauer, T, Hutschenreuter, J, Wolf, D, Sergeev, S 2004Pb/Pb and U/Pb zircon dating of subvolcanic rhyolite as a time marker for Hercynian granite magmatism and Sn mineralisation in the Eibenstock granite, Erzgebirge, Germany: considering effects of zircon alteration.Mineral Deposita39646669CrossRefGoogle Scholar
  16. Kloetzli, US, Buda, G, Skiold, T 2004Zircon typology, geochronology and whole rock Sr–Nd isotope systematics of the Mecsek Mountain granitoids in the Tisia Terrane (Hungary).Mineral Petrol81113134Google Scholar
  17. Li, WD 1989On the Yangtze type copper ore deposits and its origin.Nanjing Inst Geol Miner Resour, Chin Acad Geol Sci, Bull10114(in Chinese, with English abstract)Google Scholar
  18. Ludwig KR (1999) Isoplot/Ex, a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Centre Spec Publ 1a: 49Google Scholar
  19. Mahood, G, Hildreth, W 1983Large partition coefficient for trace elements in high-silica rhyolites.Geochim Cosmochim Acta471130CrossRefGoogle Scholar
  20. Mezger, K, Krogstad, EJ 1997Interpretation of discordant U–Pb zircon ages – an evaluation.J Metamorph Geol15127140CrossRefGoogle Scholar
  21. Nowell, GM, Kempton, PD, Noble, SR, Fitton, JG, Saunders, AD, Mahoney, JJ, Taylor, RN 1998High precision Hf isotope measurements of MORB and OIB by thermal ionization mass spectrometry: insights into the depleted mantle.Chem Geol149211233CrossRefGoogle Scholar
  22. Pan, Y, Ping, D 1999The lower Changjiang (Yangzi/Yangze River) metallogenic belt, east central China: intrusion and wall rock-hosted Cu–Fe–Au, Mo, Pb, Zn, Ag deposits.Ore Geol Rev15177242CrossRefGoogle Scholar
  23. Pei, HF, Hong, DW 1995The granites of South China and their metallogeny.Episodes187786Google Scholar
  24. Shannon, RD 1976Revised effective ionic radii and systematic studies of interatomic distances in halide and chalcogenides.Acta Crystallogr32751767Google Scholar
  25. Sinha, AK, Wayne, DM, Hewitt, DA 1992The hydrothermal stability of zircon – preliminary experimental and isotopic studies.Geochim Cosmochim Acta5635513560CrossRefGoogle Scholar
  26. Sun, T, Zhao, X, Chen, P, Li, H, Zhou, H, Wang, Z, Shen, W 2003Petrogenesis of Mesozoic peralkaline granites from the eastern part of Nanling Mountain Range in South China.Sci in China3312091218Google Scholar
  27. Tu G, Xu K, Wang ZG, Zhao Z (1984) Preliminary studies on two alkali-rich intrusive belts in South China. In: Xu K, Tu G (eds) Geology of granites and their metallogenic relations. Science Press, Beijing, ChinaGoogle Scholar
  28. Usui, T, Kobayashi, K, Nakamura, E 2002U–Pb isotope systematics of mirco-zircon inclusions: implications for the age and origin of eclogite xenolith from the Colorado Plateau.Proc Jpn Acad785156CrossRefGoogle Scholar
  29. Vavra, G 1994Systematics of internal zircon morphology in major Variscan granitoid types.Contrib Mineral Petrol117331344CrossRefGoogle Scholar
  30. Vavra, G, Schmid, R, Gebauer, D 1999Internal morphology, habit and U–Th–Pb microanalysis of amphibolite-to-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps).Contrib Mineral Petrol134380404Google Scholar
  31. Wang, W, Li, W, Dong, P, Fu, D 1994The characteristics of REE in Wushan copper deposits, Jiangxi.Volcanol Mineral Resour153543(in Chinese, with English Abstract)Google Scholar
  32. Wang, X, Kienast, JR 1999Morphology and geochemistry of zircon: a case study on zircon from the microgranitoid enclaves.Sci in China (Ser D)42544552Google Scholar
  33. Wang, YB, Liu, DY, Meng, YF 2004SHRIMP U–Pb geochronology of the Xinqiao Cu–S–Fe–Au deposit in the Tongling ore district, Anhui.Geology in China31169173Google Scholar
  34. Wiedenbeck, M, Allie, P, Corfu, F, Griffin, WL, Meier, M, Oberli, I, Quadt, A, Roddick, JC, Spiegel, W 1995Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyzes.Geostand Newsletter19123Google Scholar
  35. Wu, LS, Zou, XQ 1997Re–Os isotopic age study of the Chengmenshan copper deposit, Jiangxi province.Mineral Deposits16376381(in Chinese, with English Abstract)Google Scholar
  36. Xu, G, Zhou, J 2001The Xinqiao Cu–S–Fe–Au deposit in the Tongling mineral district, China: synorogenic remobilization of a stratiform sulfide deposit.Ore Geol Rev187794CrossRefGoogle Scholar
  37. Xu, XS, Fan, JC, O’Reilly, SY, Jiang, SY, Griffin, WL 2004U–Pb dating of zircons and petrogenetic implications for Tongguanshan quartz diorite and its enclaves, Anhui province.Chinese Sci Bull1818831891Google Scholar
  38. Chen, JF, Zhou, TX, Li, XM, Foland, KA, Hang, CY, Lu, W 1993Sr and Nd isotopic constraints on source regions of the intermediate and acid intrusions from southern Anhui provinence.Geochemistry3261268(in Chinese, with English abstract)Google Scholar
  39. Zhai, YS, Xiong, YL, Yao, SZ, Lin, X 1996Metallogeny of copper and iron deposits in the Eastern Yangtse Craton, east-cantral China.Ore Geol Rev11229248CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2005

Authors and Affiliations

  • X. Ding
    • 1
  • S.-Y. Jiang
    • 1
  • K.-D. Zhao
    • 1
  • E. Nakamura
    • 2
  • K. Kobayashi
    • 2
  • P. Ni
    • 1
  • L-X. Gu
    • 1
  • Y.-H. Jiang
    • 1
  1. 1.State Key Laboratory for Mineral Deposits Research, Department of Earth SciencesNanjing UniversityNanjingChina
  2. 2.The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Study of the Earth’s Interior, Okayama University at MisasaTottori-kenJapan

Personalised recommendations