Advertisement

Mineralogy and Petrology

, Volume 85, Issue 3–4, pp 205–221 | Cite as

Phosphorus – an omnipresent minor element in garnet of diverse textural types from leucocratic granitic rocks

  • K. Breiter
  • M. Novák
  • F. Koller
  • J. Cempírek
Article

Summary

Elevated P contents of up to 0.086 apfu (1.21 wt.% P2O5) were found in garnet from leucocratic granitic rocks (orthogneisses, granites, barren to highly evolved pegmatites) in the Moldanubicum and Silesicum, Czech Republic, and in complex granitic pegmatites from southern California, USA, and Australia. Minor concentrations (0.15–0.55 wt.% P2O5) appear ubiquitous in garnet from leucocratic granitic rocks of different origins and degrees of fractionation. Concentrations of P are not related to Mn/(Mn + Fe) that vary from 0.12–0.86 and to textural types of garnet (i.e., isolated anhedral to euhedral grains and nodules, graphic and random garnet–quartz aggregates, subsolidus veins of fine-grained garnet). Garnet compositions exhibit negative correlations for P/Si and P/R2+ where R2+ = Fe + Mn + Mg + Ca, while Al is constant at ∼2.05 apfu. Concentrations of Na are largely below 0.02 apfu but positively correlate with P. The main substitution may involve A-site vacancy and/or the presence of some light element(s) in the crystal structure. The substitution □P2 R2+ −1Si−2 and/or alluaudite-type Na□P3 R2+ −1Si−3 seem the most likely P-incorporating mechanisms. The partitioning of P among garnet and associated minerals in granitic systems remains unclear; however, it directly affects the distribution of Y and REEs.

Keywords

Nodule Quartz Phosphorus Crystal Structure Geochemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, SD, Černý, P, Halden, NM, Chapman, R, Uher, P 1998The Yitt-B pegmatite swarm at Bernic Lake southeastern Manitoba: a geochemical and paragenetic anomaly.Can Mineral36283301Google Scholar
  2. Arima, M, Yamashita, H 1994P2O5-rich garnet from Hosokawa-dani, Tanzawa Mountainland.J Mineral Petrol Econ Geol89166Google Scholar
  3. Bea, F, Montero, P, Garuti, G, Zaccarini, F 1997Pressure-dependence of rare earth element distribution in amphibolite- and granulite-grade garnets; a LA-ICP-MS study.Geostand Newslett21253270CrossRefGoogle Scholar
  4. Bishop, FC, Smith, JV, Dawson, JB 1978Na, K, P and Ti in garnet, pyroxene and olivine from peridotite and eclogite xenoliths from African kimberlites.Lithos11155173Google Scholar
  5. Bogoch, R, Bourne, J, Shirav, M, Harnois, L 1997Petrochemistry of a Late Precambrian garnetiferous granite, pegmatite and aplite, southern Israel.Mineral Mag61111122Google Scholar
  6. Breiter K (2004) Chemical composition of orthogneisses and their garnets in the NE part of the Moldanubicum. Geoscience Research Reports for 2003. Czech Geological Survey, Praha, pp 102–104 (in Czech)Google Scholar
  7. Breiter K, Beran A, Buriánek D, Cempírek J, Dutrow B, Henry D, Novák M, Raimboult L (2003) Přibyslavice near Čáslav, tourmaline-muscovite orthogneiss, muscovite granite, pegmatite. In: Novák M (ed) International Symposium on Light Elements in Rock Forming Minerals LERM 2003. Field trip guidebook. Masaryk University, Brno, pp 77–90Google Scholar
  8. Breiter, K, Koller, F 2003Phosphorus-rich garnets from leucocrate igneous rocks (Přibyslavice, Moldanubicum, Czech Republic).Mitt Österr Mineral Ges1489798Google Scholar
  9. Breiter, K, Kronz, A 2004Phosphorus-rich topaz from fractionated granites (Podlesí, Czech Republic).Mineral Petrol81235247Google Scholar
  10. Breiter, K, Scharbert, S 1998Latest intrusions of the Eisgarn pluton (South Bohemia – Northern Waldviertel).Jb Geol B-A1412537Google Scholar
  11. Breiter, K, Siebel, W 1995Granitoids of the Rozvadov pluton, Western Bohemia and Oberpfalz.Geol Rundsch84506519Google Scholar
  12. Burt, DM 1996Compositional limits of phosphorus substitution in garnet in pegmatites and in the mantle.Geol Assoc Can – Mineral Assoc Can, Program Abstr2A-15Google Scholar
  13. Černý P, Cempírek J, Novák M, Staněk J (2000) Poor Fe–Mn fractionation vs. strong morphological and paragenetic diversification of garnet from the pegmatite dike Oldřich, Dolní Bory. Symposium Magurka 2000, Program Abstrakty Exkurzný sprievodca. Geologický ústav SAV, Bratislava, p 7Google Scholar
  14. Černý P, Hawthorne FC (1982) Selected peraluminous minerals. In: Černý P (ed) Mineralogical Association of Canada Short Course in Granitic Pegmatites in Science and Industry. Publ, Winnipeg, pp 163–186Google Scholar
  15. Černý, P, Novák, M, Chapman, R 1992Effects of sillimanite-grade metamorphism and shearing on Nb, Ta-oxide minerals in granitic pegmatites: Maršíkov, northern Moravia, Czechoslovakia.Can Mineral30699718Google Scholar
  16. Clarke, DB 1981The mineralogy of peraluminous granites: a review.Can Mineral19317Google Scholar
  17. Dallmeyer D, Franke W, Weber K (1995) Pre-Permian geology of central and eastern Europe. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  18. du Bray, EA 1988Garnet compositions and their use as indicators of peraluminous granitoid petrogenesis – southeastern Arabian Shield.Contrib Mineral Petrol100205212Google Scholar
  19. Ertl, A, Schuster, R, Prowatke, S, Brandstätter, F, Ludwig, T, Berndhardt, H-J, Koller, F, Hughes, JM 2004Mn-rich tourmaline and fluorapatite in a Variscan pegmatite from Eibenstein an der Thaya, Bohemian Massif, Lower Austria.Eur J Mineral16551560Google Scholar
  20. Foord EE, London D, Kampf AR, Shigley JE, Snee LW (1991) Gem-bearing pegmatites of San Diego County, California. In: Walamender MJ, Hanan BB (eds) Geological excursions in Southern California and Mexico. Field Trip Guidebook, 1991 Annual Meeting Geol Soc America, San Diego, pp 128–146Google Scholar
  21. Franke, W, Haak, V, Oncken, O, Tanner, D 2000Orogenic processes: quantification and modelling in the Variscan belt.Geol Soc Lond Spec Publ179459Google Scholar
  22. Frýda, J, Breiter, K 1995Alkali feldspars as a main phosphorus reservoirs in rare-metal granites: three examples from the Bohemian Massif (Czech Republic).Terra Nova7315320Google Scholar
  23. Haggerty, SE, Fung, AT, Burt, DM 1994Apatite, phosphorus and titanium in eclogitic garnet from the upper mantle.Geophys Res Lett2116991702Google Scholar
  24. Khorari, S, Rulmont, A, Tarte, P 1997The arsenates NaCa2M2 2+(AsO4)3 (M2+ = Mg, Ni, Co): influence of cationic substitutions on the garnet–alluaudite polymorphism.J Solid State Chem131290297Google Scholar
  25. Klečka M, Machart J, Pivec E (1992) Locality No. 10: Křížovská hora quarry near Vlašim, a Pre-Variscan tourmaline-bearing two-mica orthogneiss (Blaník type). In: Novák M, Černý P (eds) Field trip guidebook, Lepidolite 200. Masaryk University, Brno, pp 69–74Google Scholar
  26. Kontak, DJ, Corey, M 1988Metasomatic origin of spessartine-rich garnet in the South Mountain Batholith, Nova Scotia.Can Mineral26315334Google Scholar
  27. London, D 1992Phosphorus in S-type magmas: the P2O5 content of feldspars from peraluminous granites pegmatites, and rhyolites.Am Mineral77126145Google Scholar
  28. London, D, Černý, P, Loomis, JL, Pan, JJ 1990Phosphorus in alkali feldspars of rare-element granitic pegmatites.Can Mineral28771786Google Scholar
  29. London, D, Wolf, MB, Morgan, GBVI, Garrido, MG 1999Experimental silicate–phosphate equilibria in peraluminous granitic magmas, with a case study of the Alburquerque batholith at Tres Arroyos, Badajoz, Spain.J Petrol40215240Google Scholar
  30. Manning, DAC 1983Chemical variation in garnets from aplites and pegmatites, peninsular Thailand.Mineral Mag47353358Google Scholar
  31. Mason, B, Berggren, T 1941A phosphate-bearing spessartite garnet from Wodgina, Western Australia.Geol Foren Forhandl63413418Google Scholar
  32. Miller, CF, Stoddard, EF 1981The role of manganese in the paragenesis of magmatic garnet: an example from the Old Woman-Piute Range, California.J Geol89233246Google Scholar
  33. Moore PB (1982) Pegmatite minerals of P (V) and B (III). In: Černý P (ed) Mineralogical Association of Canada Short Course in Granitic Pegmatites in Science and Industry. Publ, Winnipeg, pp 269–291Google Scholar
  34. Nováček, R 1931Garnet of the Czechoslovak pegmatites.Věstník Královské České Společnosti Nauk Třída matematicko-přírodovědná38155(in Czech)Google Scholar
  35. Novák, M 1988Garnets from pegmatites of the Hrubý Jeseník Mts. (northern Moravia).Acta Musei Moraviae Sciencias naturalis73328(in Czech with English summary)Google Scholar
  36. Novák M, Černý P, Čech F, Staněk J (1992) Granitic pegmatites in the territory of the Bohemian and Moravian Moldanubicum. In: Novák M, Černý P (eds) Field Trip Guidebook, Lepidolite 200. Masaryk University, Brno, pp 11–20Google Scholar
  37. Novák, M, Černý, P, Uher, P 2003Extreme variation and apparent reversal of Nb–Ta fractionation in columbite-group minerals from the Scheibengraben beryl-columbite pegmatite, Maršíkov, Czech Republic.Eur J Mineral15565574Google Scholar
  38. Novák, M, Černý, P, Kimbrough, DL, Taylor, MC, Ercit, TS 1998U–Pb Ages of monazite from granitic pegmatites in the Moldanubicum and their geological implications.Acta Univ Carol Geol42309310Google Scholar
  39. Pouchou JL, Pichoir F (1985) “PAP” (ϕ–ρ–Z) procedure for improved quantitative microanalysis. In: Armstrong JT (ed) Microbeam analysis. Publ, San Francisco, pp 104–106Google Scholar
  40. Povondra, P, Pivec, E, Čech, F, Lang, M, Novák, F, Prachař, I, Ulrych, J 1987Přibyslavice peraluminous granite.Acta Univ Carol Geol31183283Google Scholar
  41. Puziewicz, J 2003Post-magmatic origin of garnets in aplites from the Kamienna Góra granite (the Žulová granitic pluton, SW Poland).Mineral Polonica34312Google Scholar
  42. Shannon, RD 1976Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides.Acta Crystallogr A32751767Google Scholar
  43. Spear FS, Pyle JM (2002) Apatite, monazite, and xenotime in metamorphic rocks. In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates – geochemical, geobiological, and materials importance. Mineralogical Society of America, Washington D.C., pp 293–336 (Rev Mineral 48)Google Scholar
  44. Staněk, J 1997Mineral assemblages of significant pegmatite dikes from the Hatě area near Dolní Bory, Western Moravia.Acta Musei Moraviae Sciencias naturalis82319(in Czech)Google Scholar
  45. Taylor, LS, Wise, MA 1995Geochemistry and mode of occurence of phosphorus in spessartine. Geological Society of America Annual Meeting, New Orleans, Louisiana.Abstracts with Programs27A470Google Scholar
  46. Taylor LS, Wise MA, Simmons WB, Falster AU (1997) Occurence of phosphorus in garnets from gem-bearing pegmatites. In: Francis C, Chamberlain S (eds) 23rd Rochester Mineralogical Symposium, abstracts. Rock and Minerals 3: 189–190Google Scholar
  47. Vrána, S, Kröner, A 1995Pb–Pb zircon ages for tourmaline alkali-feldspar orthogneiss from Hluboká nad Vltavou in southern Bohemia.Bull Czech Geol Soc40127135Google Scholar
  48. van Westrenen, W, Blundy, J, Wood, B 1999Crystal-chemical controls on trace element partitioning between garnet and anhydrous silicate melt.Am Mineral84838847Google Scholar
  49. Withworth, MP 1992Petrogenetic implications of garnets associated with lithium pegmatites from SE Ireland.Mineral Mag567583Google Scholar
  50. Zhang, Ch, Gieré, R, Stünitz, H, Brack, P, Ulmer, P 2001Garnet–quartz intergrowths in granitic pegmatites from Bergell and Adamello, Italy.Schweiz Mineral Petrogr Mitt8189113Google Scholar

Copyright information

© Springer-Verlag/Wien 2005

Authors and Affiliations

  • K. Breiter
    • 1
  • M. Novák
    • 2
  • F. Koller
    • 3
  • J. Cempírek
    • 2
  1. 1.Czech Geological SurveyPrahaCzech Republic
  2. 2.Institute of Geological Sciences, Masaryk UniversityBrnoCzech Republic
  3. 3.Department of Geological SciencesUniversity of ViennaViennaAustria

Personalised recommendations