Advertisement

Protoplasma

pp 1–11 | Cite as

The role of carbonic anhydrase α-CA4 in the adaptive reactions of photosynthetic apparatus: the study with α-CA4 knockout plants

  • Natalia N. RudenkoEmail author
  • Tatyana P. Fedorchuk
  • Vasily V. Terentyev
  • Olga V. Dymova
  • Ilya A. Naydov
  • Tamara K. Golovko
  • Maria M. Borisova-Mubarakshina
  • Boris N. Ivanov
Original Article
  • 36 Downloads

Abstract

The role of α-carbonic anhydrase 4 (α-CA4) in photosynthetic machinery functioning in thylakoid membranes was studied, using Arabidopsis thaliana wild type plants (WT) and the plants with knockout of At4g20990 gene encoding α-CA4 (αCA4-mut) grown both in low light (LL, 80 μmol quanta m−2 s−1) or in high light (HL, 400 μmol quanta m−2 s−1). It was found that a content of PsbS protein, one of determinants of non-photochemical quenching of chlorophyll fluorescence, increased in mutants by 30% and 100% compared with WT plants in LL and in HL, respectively. Violaxanthin cycle pigments content and violaxanthin deepoxidase activity in HL were also higher in αCA4-mut than in WT plants. The content of PSII core protein, D1, when adapting to HL, decreased in WT plants and remained unchanged in mutants. This indicates, that the decrease in the content of Lhcb1 and Lhcb2 proteins in HL (Rudenko et al. Protoplasma 55(1):69-78, 2018) in WT plants resulted from decrease of both Photosystem II (PSII) complex content and content of these proteins in this complex, whereas in αCA4-mut plants from the latter process only. The absence of α-CA4 did not affect the rate of electron transport through Photosystem I (PSI) in thylakoids of mutant vs. WT, but led to 50–80% increase in the rate of electron transport from H2O to QA, evidencing the location of α-CA4 close to PSII. The latter difference may raise the question about its causal connection with the difference in the D1 protein content change during adapting to increased illumination in the presence and the absence of α-CA4.

Keywords

Arabidopsis thaliana Carbonic anhydrase Thylakoid D1 protein PsbS protein Violaxanthin Violaxanthin deepoxidase Chlorophyll a Chlorophyll b STN7 kinase Electron transport 

Notes

Acknowledgments

The authors express their gratitude to Dr. J.V. Moroney of Louisiana State University for providing the seeds of homozygous lines of mutants with knocked out genes of CA produced in his laboratory.

Funding information

This work was supported by Russian Science Foundation (project no. 17-14-01371). It was also supported by funding the themes no. АААА-А17-117030110135-1 and no. АААА-А17-117033010038-7 of State Scientific Program in the part of pigment content measurements.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Berger H, Blifernez-Klassen O, Ballottari M, Bassi R, Wobbe L, Kruse O (2014) Integration of carbon assimilation modes with photosynthetic light capture in the green alga Chlamydomonas reinhardtii. Mol Plant 7(10):1545–1559.  https://doi.org/10.1093/mp/ssu083 CrossRefPubMedGoogle Scholar
  2. Berger H, De Mia M, Morisse S, Marchand C, Lemaire S, Wobbe L, Kruse O (2016) A light switch based on protein S-nitrosylation fine-tunes photosynthetic light-harvesting in the microalga Chlamydomonas reinhardtii. Plant Physiol 171:821–832.  https://doi.org/10.1104/pp.15.01878 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Borisova-Mubarakshina MM, Ivanov BN, Vetoshkina DV, Lubimov VY, Fedorchuk TP, Naydov IA, Kozuleva MA, Rudenko NN, Dall’Osto L, Cazzaniga S, Bassi R (2015) Long-term acclimatory response to excess excitation energy: evidence for a role of hydrogen peroxide in the regulation of photosystem II antenna size. J Exp Bot 66:7151–7164.  https://doi.org/10.1093/jxb/erv410 CrossRefPubMedGoogle Scholar
  4. Casazza AP, Tarantino D, Soave C (2001) Preparation and functional characterization of thylakoids from Arabidopsis thaliana. Photosynth Res 68:175–180.  https://doi.org/10.1023/A:1011818021875 CrossRefPubMedGoogle Scholar
  5. DiMario RJ, Clayton H, Mukherjee A, Ludwig M, Moroney JV (2017) Plant carbonic anhydrases: structures, locations, evolution, and physiological roles. Mol Plant 10:30–46.  https://doi.org/10.1016/j.molp.2016.09.001 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Dymova OV, Grzyb J, Golovko TK, Strzalka K (2010) Characterization of pigment apparatus in winter green and summer green leaves of a shade tolerant plant Ajuga reptans. Russ J Plant Physiol 57(6):755–763.  https://doi.org/10.1134/S1021443710060026 CrossRefGoogle Scholar
  7. Fabre N, Reiter IM, Becuwe-Linka N, Genty B, Rumeau D (2007) Characterization and expression analysis of genes encoding alpha and beta carbonic anhydrases in Arabidopsis. Plant Cell Environ 30:617–629.  https://doi.org/10.1111/j.1365-3040.2007.01651.x CrossRefPubMedGoogle Scholar
  8. Friso G, Giacomelli L, Ytterberg AJ, Peltier JB, Rudella A, Sun Q, van Wijk KJ (2004) In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts: new proteins, new functions, and a plastid proteome database. Plant Cell 16:478–499.  https://doi.org/10.1105/tpc.017814 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Hewett-Emmett D, Tashian RE (1996) Functional diversity, conservation, and convergence in the evolution of the α, β, and γ-carbonic anhydrase gene families. Mol Phylogenet Evol 5:50–77.  https://doi.org/10.1006/mpev.1996.0006 CrossRefPubMedGoogle Scholar
  10. Ignatova LK, Rudenko NN, Khristin MS, Ivanov BN (2006) Heterogeneous origin of carbonic anhydrase activity of thylakoid membranes. Biochem Mosc 71:525–532.  https://doi.org/10.1134/S0006297906050099 CrossRefGoogle Scholar
  11. Ignatova LK, Rudenko NN, Mudrik VA, Fedorchuk TP, Ivanov BN (2011) Carbonic anhydrase activity in Arabidopsis thaliana thylakoid membrane and fragments enriched with PSI or PSII. Photosynth Res 110:89–98.  https://doi.org/10.1007/s11120-011-9699-0 CrossRefPubMedGoogle Scholar
  12. Ignatova LK, Zhurikova EM, Ivanov BN (2019) The presence of the low molecular mass carbonic anhydrase in photosystem II of C3 higher plants. J Plant Physiol 232:94–99.  https://doi.org/10.1016/j.jplph.2018.11.017 CrossRefPubMedGoogle Scholar
  13. Ivanov BN, Ignatova LK, Romanova AK (2007) Diversity in forms and functions of carbonic anhydrase in terrestrial higher plants. Russ J Plant Physiol 54(2):143–162.  https://doi.org/10.1134/S102144370702001X CrossRefGoogle Scholar
  14. Jin H, Liu B, Luo L, Feng D, Wang P, Liu J, Da Q, He Y, Qi K, Wang J, Wang H-B (2014) Hypersensitive to high light interacts with low quantum yield of photosystem II and functions in protection of photosystem ii from photodamage in Arabidopsis. Plant Cell 26:1213–1229.  https://doi.org/10.1105/tpc.113.122424 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Keren N, Berg A, Van Kan PJM, Levanon H, Ohad I (1997) Mechanism of photosystem II photoinactivation and D1 protein degradation at low light: the role of back electron flow. Proc Natl Acad Sci U S A 94:1579–1584.  https://doi.org/10.1073/pnas.94.4.1579 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Li X, Björkman O, Shih C, Grossman AR, Rosenquist M, Stefan J, Niyogi KK (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403:391–395.  https://doi.org/10.1038/35000131 CrossRefPubMedGoogle Scholar
  17. Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382CrossRefGoogle Scholar
  18. Liljas A, Laurberg M (2000) A wheel invented three times. The molecular structures of the three carbonic anhydrases. EMBO Rep 1(1):16–17.  https://doi.org/10.1093/embo-reports/kvd016 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lu YK, Stemler AJ (2002) Extrinsic photosystem II carbonic anhydrase in maize mesophyll chloroplasts. Plant Physiol 128:643–649.  https://doi.org/10.1104/pp.010643 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Mekala NR, Suorsa M, Rantala M, Aro EM, Tikkanen M (2015) Plants actively avoid state transitions upon changes in light intensity: role of light-harvesting complex II protein. Plant Physiol 168(2):721–734.  https://doi.org/10.1104/pp.15.00488 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Miszalski Z, Skoczowski A, Silina E, Dymova O, Golovko T, Kornas A, Strzalka K (2016) Photosynthetic activity of vascular bundles in Plantago media leaves. J Plant Physiol 204:36–43.  https://doi.org/10.1016/j.jplph.2016.06.012 CrossRefPubMedGoogle Scholar
  22. Moroney JV, Bartlett SG, Samuelsson G (2001) Carbonic anhydrases in plants and algae. Plant Cell Environ 24:141–153.  https://doi.org/10.1111/j.1365-3040.2001.00669.x CrossRefGoogle Scholar
  23. Nilkens M, Kress E, Lambrev P, Miloslavina Y, Müller M, Holzwarth AR, Jahns P (2010) Identification of a slowly inducible zeaxanthin dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis. Biochim Biophys Acta 1797:466–475.  https://doi.org/10.1016/j.bbabio.2010.01.001 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Price GD, Badger MR, Bassett ME, Whitecross MI (1985) Involvement of plasmalemmasomes and carbonic anhydrase in photosynthetic utilization of bicarbonate in Chara corrallina. Aust J Plant 12:241–256.  https://doi.org/10.1071/PP9850241
  25. Prins HBA, Helder RJ (1985) HCO3ˉ assimilation by Potamogeton lucens: polar cation transport and the role of H+ extrusion. In: Lucas WJ, Merry JA (eds) Inorganic carbon uptake by aquatic photosynthetic organisms. American Society of Plant Physiology, Rockville, pp 271–286Google Scholar
  26. Pronina NA, Allakhverdiev SI, Kupriyanova EV, Klyachko-Gurvich GL, Klimov VV (2002) Carbonic anhydrase in subchloroplast particles of pea plants. Russ J Plant Physiol 49(3):303–310.  https://doi.org/10.1023/A:1015589215862 CrossRefGoogle Scholar
  27. Rantala M, Tikkanen M, Aro EM (2017) Proteomic characterization of hierarchical megacomplex formation in Arabidopsis thylakoid membrane. Plant J 5:951–962.  https://doi.org/10.1111/tpj.13732 CrossRefGoogle Scholar
  28. Ruban AV (2016) Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiol 140:1903–1916.  https://doi.org/10.1104/pp.15.01935 CrossRefGoogle Scholar
  29. Rudenko NN, Vetoshkina DV, Fedorchuk TP, Ivanov BN (2017) Effect of light intensity under different photoperiods on expression level of carbonic anhydrase genes of the α- and β-families in Arabidopsis thaliana leaves. Biochem Mosc 82(9):1025–1035.  https://doi.org/10.1134/S000629791709005X CrossRefGoogle Scholar
  30. Rudenko NN, Fedorchuk TP, Vetoshkina DV, Zhurikova EM, Ignatova LK, Ivanov BN (2018) Influence of knockout of At4g20990 gene encoding α-CA4 on photosystem II light-harvesting antenna in plants grown under different light intensities and day lengths. Protoplasma 55(1):69–78.  https://doi.org/10.1007/s00709-017-1133-9 CrossRefGoogle Scholar
  31. Schindler C, Lichtenthaler HK (1996) Photosynthetic CO2 assimilation, chlorophyll fluorescence and zeaxanthin accumulation in field grown maple trees in the course of a sunny and cloudy day. J Plant Physiol 148:399–412.  https://doi.org/10.1016/S0176-1617(96)80272-0 CrossRefGoogle Scholar
  32. Singh M, Satoh K, Yamamoto Y, Kanervo E, Aro E-M (2008) In vivo quality control of photosystem II in cyanobacteria Synechocystis sp. PCC 6803: D1 protein degradation and repair under the influence of light, heat and darkness. Indian J Biochem Biophys 45:237–243PubMedGoogle Scholar
  33. Tikkanen M, Grieco M, Kangasjärvi S, Aro EM (2010) Thylakoid protein phosphorylation in higher plant chloroplasts optimizes electron transfer under fluctuating light. Plant Physiol 52(2):723–35.  https://doi.org/10.1104/pp.109.150250 CrossRefGoogle Scholar
  34. Trotta A, Suorsa M, Rantala M, Lundin B, Aro EM (2016) Serine and threonine residues of plant STN 7 kinase are differentially phosphorylated upon changing light conditions and specifically influence the activity and stability of the kinase. Plant J 87(5):484–494.  https://doi.org/10.1111/tpj.13213 CrossRefPubMedGoogle Scholar
  35. Vaklinova SG, Goushina LM, Lazova GN (1982) Carboanhydrase activity in chloroplasts and chloroplast fragments. C R Acad Bulg Sci 35:172–1724Google Scholar
  36. Vetoshkina DV, Kozuleva MA, Terentyev VV, Zhurikova EM, Borisova-Mubarakshina MM, Ivanov BN (2019) Comparison of state transitions of the photosynthetic antennae in Arabidopsis and barley plants upon illumination with light of various intensity. Biochem Mosc 84(9):1065–1073.  https://doi.org/10.1134/S0006297919090098 CrossRefGoogle Scholar
  37. Villarejo A, Buren S, Larsson S, Dejardin A, Monne M,  Rudhe C, Karlsson J, Jansson S, Lerouge P, Rolland N, von Heijne G, Grebe M, Bako L, Samuelsson G (2005) Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast. Nature Cell Biol 7:1224–1231 https://doi.org/10.1038/ncb1330 CrossRefGoogle Scholar
  38. von Caemmerer S, Quinn V, Hancock N, Price GD, Furbank RT, Ludwig M (2004) Carbonic anhydrase and C4 photosynthesis: a transgenic analysis. Plant Cell Environ 27:697–703.  https://doi.org/10.1111/j.1365-3040.2003.01157.x CrossRefGoogle Scholar
  39. Wang M, Zhang Q, Liu FC, Xie WF, Wang GD, Wang J, Gao QH, Duan K (2014) Family-wide expression characterization of Arabidopsis beta-carbonic anhydrase genes using qRT-PCR and promoter: GUS fusions. Biochimie 97:219–227.  https://doi.org/10.1016/j.biochi.2013.10.020 CrossRefPubMedGoogle Scholar
  40. Zhurikova EM, Ignatova LK, Semenova G, Rudenko NN, Mudrik VA, Ivanov BN (2015) Effect of knockout of α-carbonic anhydrase 4 gene on photosynthetic characteristics and starch accumulation in leaves of Arabidopsis thaliana. Russ J Plant Physiol 62:564–569.  https://doi.org/10.1134/S1021443715040214 CrossRefGoogle Scholar
  41. Zhurikova EM, Ignatova LK, Rudenko NN, Mudrik VA, Vetoshkina DV, Ivanov BN (2016) The participation of two carbonic anhydrases of alpha family in photosynthetic reactions in Arabidopsis thaliana. Biochem Mosc 81(10):1182–1187.  https://doi.org/10.1134/S0006297916100151 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Natalia N. Rudenko
    • 1
    Email author
  • Tatyana P. Fedorchuk
    • 1
  • Vasily V. Terentyev
    • 1
  • Olga V. Dymova
    • 2
  • Ilya A. Naydov
    • 1
  • Tamara K. Golovko
    • 2
  • Maria M. Borisova-Mubarakshina
    • 1
  • Boris N. Ivanov
    • 1
  1. 1.Institute of Basic Biological Problems of the Russian Academy of SciencesFederal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”PushchinoRussia
  2. 2.Institute of Biology, Komi Research Center, Ural BranchRussian Academy of SciencesSyktyvkarRussia

Personalised recommendations