pp 1–17 | Cite as

Melatonin activates the vascular elements, telocytes, and neuroimmune communication in the adrenal gland of Soay rams during the non-breeding season

  • Manal T. Hussein
  • Doaa M. MokhtarEmail author
  • A. H. S Hassan
Original Article


The adrenal glands of 15 adult Soay rams were used to study the effect of melatonin on their vascular elements and cellular organization. A significant increase in the cross-sectional area of the blood sinusoids was demonstrated after melatonin administration. The vimentin-expressing mesenchymal cells were increased in the melatonin-treated group. Intensive S-100 protein expression was observed in the sustentacular cells and telocytes (TCs) of the treated groups. Moreover, S-100 protein expressed intensively in the dendritic cells that distributed around the blood sinusoids. Dendritic cells showed positive immunoreactivity for CD8 and CD103. Many dendritic cells with well-defined processes were observed close to the nerve fibers after melatonin administration. A significant increase in the number and diameter of dendritic cells after melatonin treatment was demonstrated. Many highly active TCs were observed in the medulla of the treated group, which were characterized by long telopodes (Tps) containing abundant secretory vesicles that released into the extracellular milieu and towards the dendritic cells. In the melatonin-treated groups, the nerve fibers showed a significant increase in their cross-sectional area accompanied by an increase in the activity of Schwann cells and neighboring dendritic cells. In the treated group, TCs and DCs appear to contribute to angiogenesis. A planner contact between Tps and the stem cell was demonstrated in the treated group. Melatonin induced a stimulatory action on the vascular and neuronal elements of the adrenal gland. Moreover, it enhances the activity of a variety of cells including telocytes, dendritic, sustentacular, and Schwann cells.


CD8 S100-protein Dendritic cells Telocytes Nerve fibers 



dendritic cell




transmission electron microscopy





Prof. Dr. A.H.S. Hassan was on sabbatical leave—from the Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University—at MRC, Reproductive Biology Unit, Edinburgh, UK, and supported by British Council grant (1986). The authors are grateful to Prof. G.A. Lincoln, professor of physiology at MRC, Edinburgh, for his great support in the collection of samples for this experiment. In addition, we thank the Electron Microscopy Unit technicians at Assiut University for their help in processing the imaging of the electron microscopy samples.

Author contributions

M. T. Hussein* performed the immunohistochemical, morphometrical studies, analyzed the results and contributed to preparing and reviewing the paper. D. M. Mokhtar* performed the light- and electron- microscopical study, analyzed the results, and contributed to preparing and reviewing the paper. A. H. S. Hassan collected the samples and contributed to preparing and reviewing the paper. *These authors contributed equally to this work.

Compliance with ethical standards

Competing interests

The authors declare that they have no competing interests.

Ethical approval and consent to participate

Experiment no. S/17353 was conducted in accordance with the U.K. Animals (Scientific Procedures) Act of 1986.


  1. Abd-Elhafeez HH, Mokhtar DM, Hassan AH (2017) Effect of melatonin on telocytes in the seminal vesicle of the Soay ram: an immunohistochemical, ultrastructural and morphometrical study. Cells Tissues Organs 203:29–54PubMedCrossRefPubMedCentralGoogle Scholar
  2. Acuña-Castroviejo D, Escames G, Venegas C, Díaz-Casado ME, Lima-Cabello E, López LC, Rosales-Corral S, Tan DX, Reiter RJ (2014) Extrapineal melatonin: sources, regulation, and potential functions. Cell Mol Life Sci 71(16):2997–3025PubMedCrossRefPubMedCentralGoogle Scholar
  3. Baba K, Benleulmi-Chaachoua A, Journe A-S, Kamal M, Guillaume J-L, Dussaud S et al (2013) Heteromeric MT1/MT2 melatonin receptors modulate photoreceptor function. Sci Signal 6(296):ra89–ra89PubMedCrossRefPubMedCentralGoogle Scholar
  4. Bancroft JD, Layton C, Suvarna SK (2013) Bancroft’s theory and practice of histological techniques, 7th edn. Churchill Livingstone, LondonGoogle Scholar
  5. Bandiera R, Vidal VPI, Motamedi FJ, Clarkson M, Sahut-Barnola I, von Gise A, Pu WT, Hohenstein P, Martinez A, Schedl A (2013) WT1 maintains adrenal-gonadal primordium identity and marks a population of AGP-like progenitors within the adrenal gland. Dev Cell 27(1):5–18PubMedPubMedCentralCrossRefGoogle Scholar
  6. Benitez-King G (2006) Melatonin as a cytoskeletal modulator: implications for cell physiology and disease. J Pineal Res 40(1):1–9PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bittman EL, Dempsey RJ, Karsch FJ (1983) Pineal melatonin secretion drives the reproductive response to day length in the ewe. Endocrionology 113:2276–2283CrossRefGoogle Scholar
  8. Cantarero I, Luesma MJ, Alvarez-Dotu JM, Muñoz E, Junquera C (2016) Transmission electron microscopy as key technique for the characterization of telocytes. Curr Stem Cell Res Ther 11(5):410–414PubMedCrossRefPubMedCentralGoogle Scholar
  9. Ceafalan L, Gherghiceanu M, Popescu LM, Simionescu O (2012) Telocytes in human skin - are they involved in skin regeneration? J Cell Mol Med 16(7):1405–1420PubMedPubMedCentralCrossRefGoogle Scholar
  10. Cismasiu VB, Radu E, Popescu LM (2011) miR-193 expression differentiates telocytes from other stromal cells. J Cell Mol Med 15(5):1071–1074PubMedPubMedCentralCrossRefGoogle Scholar
  11. Compeer EB, Boes M (2014) MICAL-L1-related and unrelated mechanisms underlying elongated tubular endosomal network (ETEN) in human dendritic cells. Commun Integr Biol 7:949–969CrossRefGoogle Scholar
  12. Díaz-Flores L, Gutiérrez R, Varela H, Valladares F, Alvarez-Argüelles H, Borges R (2008) Histogenesis and morphofunctional characteristics of chromaffin cells. Acta Physiol (Oxford) 192(2):145–163CrossRefGoogle Scholar
  13. Decker JF, Quay WB (1982) Stimulatory effects of melatonin on ependymal epithelium of choroid plexuses in golden hamsters. J Neural Transm 55(1):53–67PubMedCrossRefPubMedCentralGoogle Scholar
  14. Del Rio ML, Bernhardt G, Rodriguez-Barbosa JI, Forster R (2010) Development and functional specialization of CD103+ dendritic cells. Immunol Rev 234:268–281PubMedCrossRefPubMedCentralGoogle Scholar
  15. Dubocovich ML, Yun K, Al-Ghoul WM, Benloucif S, Masana MI (1998) Selective MT2 melatonin receptor antagonists block melatonin-mediated phase advances of circadian rhythms. FASEB J 12(12):1211–1220PubMedCrossRefPubMedCentralGoogle Scholar
  16. ElHafez E, Abouelhamd A, Hassan A (2014) Effects of administration of melatonin on the Harderian gland of sheep. J Interdiscip Hist 2(1):19CrossRefGoogle Scholar
  17. Esposito E, Cuzzocrea S (2010) Antiinflammatory activity of melatonin in central nervous system. Curr Neuropharmacol 8(3):228–242PubMedPubMedCentralCrossRefGoogle Scholar
  18. Faussone-Pellegrini MS, Thuneberg L (1999) Guide to the identification of interstitial cells of Cajal. Microsc Res Tech 47(4):248–266PubMedCrossRefPubMedCentralGoogle Scholar
  19. Hardeland R (2009) Melatonin: signaling mechanisms of a pleiotropic agent. BioFactors (Oxford, England) 35(2):183–192CrossRefGoogle Scholar
  20. Harrison FA, McDonald IR (1966) The arterial supply to the adrenal gland of the sheep. J Anat 100(Pt 1):189–202PubMedPubMedCentralGoogle Scholar
  21. Hodel A (2001) Effects of glucocorticoids on adrenal chromaffin cells. J Neuroendocrinol 13(2):216–220PubMedCrossRefPubMedCentralGoogle Scholar
  22. Hoyo GM, Martın P, Fernandez Arias C, Marın AR, Ardavın C (2002) CD8α dendritic cells originate from the CD8α dendritic cell subset by a maturation process involving CD8α, DEC-205, and CD24 up-regulation. Blood 99:999–1004CrossRefGoogle Scholar
  23. Hussein MM, Mokhtar DM (2018) The roles of telocytes in lung development and angiogenesis: an immunohistochemical, ultrastructural, scanning electron microscopy and morphometrical study. Dev Biol 443(2):137–152PubMedCrossRefPubMedCentralGoogle Scholar
  24. Jaensson E, Uronen-Hansson H, Pabst O, Eksteen B, Tian J, Coombes JL, Berg PL, Davidsson T, Powrie F, Johansson-Lindbom B, Agace WW (2008) Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans. J Exp Med 205:2139–2149PubMedPubMedCentralCrossRefGoogle Scholar
  25. Jánossy A, Orsó E, Szalay KS, Jurányi Z, Beck M, Vizi ES (1998) Cholinergic regulation of the rat adrenal zona glomerulosa. J Endocrinol 157(2):305–315PubMedCrossRefPubMedCentralGoogle Scholar
  26. Kameda Y (1996) Differential distribution of S-100 protein and vimentin in the hypophyseal pars tuberalis of the guinea pig. J Histochem Cytochem 44(5):501–510PubMedCrossRefPubMedCentralGoogle Scholar
  27. Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27:137AGoogle Scholar
  28. Kim J-B, Jung JY, Ahn J-C, Rhee CK, Hwang H-J (2009) Antioxidant and anti-apoptotic effect of melatonin on the vestibular hair cells of rat utricles. Clin Exp Otorhinolaryngol 2(1):6–12PubMedPubMedCentralCrossRefGoogle Scholar
  29. Kobayashi S, Coupland RE (1993) Morphological aspects of chromaffin tissue: the differential fixation of adrenaline and noradrenaline. J Anat 183 ( Pt 2:223–235PubMedPubMedCentralGoogle Scholar
  30. Laming PR, Kimelberg H, Robinson S, Salm A, Hawrylak N, Müller C, Ng K (2000) Neuronal-glial interactions and behavior. Neurosci Biobehav Rev 24(3):295–340PubMedCrossRefPubMedCentralGoogle Scholar
  31. Li H, Oehrlein SA, Wallerath T, Ihrig-Biedert I, Wohlfart P, Ulshöfer T, Kleinert H (1998) Activation of protein kinase C alpha and/or epsilon enhances transcription of the human endothelial nitric oxide synthase gene. Mol Pharmacol 53(4):630–637PubMedCrossRefPubMedCentralGoogle Scholar
  32. Li H, Zhang H, Yang L, Lu S, Ge J (2014) Telocytes in mice bone marrow: electron microscope evidence. J Cell Mol Med 18(6):975–978PubMedPubMedCentralCrossRefGoogle Scholar
  33. Lincoln GA, Short RV (1980) Seasonal breeding: nature’s contraceptive. Recent Prog Horm Res 36:1–52PubMedPubMedCentralGoogle Scholar
  34. Luesma MJ, Gherghiceanu M, Popescu LM (2013) Telocytes and stem cells in limbus and uvea of mouse eye. J Cell Mol Med 17(8):1016–1024PubMedPubMedCentralCrossRefGoogle Scholar
  35. Magro G, Grasso S (1997) Immunohistochemical identification and comparison of glial cell lineage in fetal, neonatal, adult and neoplastic human adrenal medulla. Histochem J 29(4):293–299PubMedCrossRefPubMedCentralGoogle Scholar
  36. Masana MI, Doolen S, Ersahin C, Al-Ghoul WM, Duckles SP, Dubocovich ML, Krause DN (2002) MT(2) melatonin receptors are present and functional in rat caudal artery. J Pharmacol Exp Ther 302(3):1295–1302PubMedCrossRefPubMedCentralGoogle Scholar
  37. Mokhtar DM, Abd-Elhafez EA (2016) Morphological studies on the peripheral circulation of the ovary in one-humped camel (Camelus dromedarius). Anat Histol Embryol 45(4):319–328PubMedCrossRefPubMedCentralGoogle Scholar
  38. Mokhtar DM, Abd-Elhafeez HH, Abou-Elmagd A, Hassan AHS (2016) Melatonin administration induced reactivation in the seminal gland of the Soay rams during non-breeding season: an ultrastructural and morphometrical study. J Morphol 277:231–243PubMedCrossRefPubMedCentralGoogle Scholar
  39. Mokhtar DM, Hussein MT, Hassan AHS (2017) Melatonin elicits stimulatory action on the adrenal gland of Soay ram: morphometrical, immunohistochemical, and ultrastructural study. Microsc Microanal 23(06):1173–1188PubMedCrossRefPubMedCentralGoogle Scholar
  40. Mokhtar DM, Hussein MM (2019) Morphological characteristic and functional dependencies of dendritic cell in developing rabbit lung during fetal and neonatal life. Dev Biol 454:29–43. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Mor M, Plazzi PV, Spadoni G, Tarzia G (1999) Melatonin. Curr Med Chem 6(6):501–518PubMedPubMedCentralGoogle Scholar
  42. Popescu LM, Gherghiceanu M, Cretoiu D, Radu E (2005) The connective connection: interstitial cells of Cajal (ICC) and ICC-like cells establish synapses with immunoreactive cells. Electron microscope study in situ. J Cell Mol Med 9(3):714–730PubMedPubMedCentralCrossRefGoogle Scholar
  43. Popescu LM, Gherghiceanu M, Suciu LC, Manole CG, Hinescu ME (2011) Telocytes and putative stem cells in the lungs: electron microscopy, electron tomography and laser scanning microscopy. Cell Tissue Res 345(3):391–403PubMedPubMedCentralCrossRefGoogle Scholar
  44. Popescu BO, Gherghiceanu M, Kostin S, Ceafalan L, Popescu LM (2012) Telocytes in meninges and choroid plexus. Neurosci Lett 516(2):265–269PubMedCrossRefPubMedCentralGoogle Scholar
  45. Radogna F, Diederich M, Ghibelli L (2010) Melatonin: a pleiotropic molecule regulating inflammation. Biochem Pharmacol 80(12):1844–1852PubMedCrossRefPubMedCentralGoogle Scholar
  46. Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. Cell Biol 17:208–212.24CrossRefGoogle Scholar
  47. Rodriguez H, Filippa V, Mohamed F, Dominquez S, Scardapane L (2007) Interaction between chromaffin and sustentacular cells in adrenal medulla of viscacha (Lagostomus maximus maximus). Anat Histol Embryol 36(3):182–185PubMedCrossRefPubMedCentralGoogle Scholar
  48. Susko I, Mornjaković Z, Alicelebić S, Cosović E, Beganović A (2004) Retinal and pineal melatonin from a circadian signal to therapeutic use. Med Arh 58(1):61–64PubMedPubMedCentralGoogle Scholar
  49. Tamarkin L, Baird CJ, Almeida OFX (1985) Melatonin: a coordinating signs for mammalian reproduction. Science (WashDC) 227:714–720CrossRefGoogle Scholar
  50. Uyanikgil Y, Cavusoglu T, Kılıc K, Yigitturk G, Celik S, Tubbs R, Turgut M (2017) Useful effects of melatonin in peripheral nerve injury and development of the nervous system. J Branchial Plex Peripher Nerve Inj 12(01):1–6PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Anatomy and Histology, Faculty of Vet. MedicineAssiut UniversityAssiutEgypt

Personalised recommendations