pp 1–9 | Cite as

Appraisal of immediate and late effects of mobile phone radiations at 2100 MHz on mitotic activity and DNA integrity in root meristems of Allium cepa

  • Shikha Chandel
  • Shalinder KaurEmail author
  • Mohd Issa
  • Harminder Pal Singh
  • Daizy Rani Batish
  • Ravinder Kumar Kohli
Original Article


The present study evaluated the potential of 2100 MHz radiofrequency radiations to act as cytotoxic and genotoxic agent. Fresh onion (Allium cepa L.) roots were exposed to electromagnetic field radiations (EMF-r) for different durations (1 h and 4 h) and evaluated for mitotic index (MI), phase index, chromosomal aberrations, and DNA damage. DNA damage was investigated with the help of the comet assay by assessing various parameters like % head DNA (HDNA), % tail DNA (TDNA), tail moment (TM), and olive tail moment (OTM). Effects of EMF-r exposure were also compared with that of methyl methanesulfonate (MMS; 90 μM), which acted as a positive control. The post-exposure effects of EMF-r after providing the test plants with an acclimatization period of 24 h were also evaluated. Compared to the control, a significant increase in the MI and aberration percentage was recorded upon 4 h of exposure. However, no specific trend of phase index in response to exposure was detected. EMF-r exposure incited DNA damage with a significant decrease in HDNA accompanied by an increase in TDNA upon exposure of 4 h. However, TM and OTM did not change significantly upon exposure as compared to that of control. Analysis of the post-exposure effects of EMF-r did not show any significant change/recovery. Our data, thus, suggest the potential cytotoxic and genotoxic nature of 2100 MHz EMF-r. Our study bears great significance in view of the swiftly emergent EMF-r in the surrounding environment and their potential for inciting aberrations at the chromosomal level, thus posing a genetic hazard.


Electromagnetic field radiations Onion Chromosomal aberrations Genotoxicity Recovery 



The authors are thankful to the Science and Engineering Research Board, Department of Science and Technology, New Delhi (India) for financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Agarwal A, Saleh RA (2002) Role of oxidants in male infertility: rationale, significance, and treatment. Urol Clin N Am 29:817–827. CrossRefGoogle Scholar
  2. Aitken RJ, Harkiss D, Buckingham D (1993) Relationship between iron-catalysed lipid peroxidation potential and human sperm function. J Reprod Fertil 98:257–265. CrossRefGoogle Scholar
  3. Alfieri RR, Bonelli MA, Pedrazzi G, Desenzani S, Ghillani M, Fumarola C, Ghibelli L, Borghetti AF, Petronini PG (2006) Increased levels of inducible HSP70 in cells exposed to electromagnetic fields. Radiat Res 165:95–104. CrossRefGoogle Scholar
  4. Andreuccetti D, Fossi R, Petrucci C (1997) An Internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz–100 GHz, IFACCNR, Florence, Italy. 2017. Based on data published by C. Gabriel et al. in 1996. Available online at Accessed 10 Aug 2018
  5. Armbruster BL, Molin WT, Bugg MW (1991) Effects of the herbicide dithiopyr on cell division in wheat root tips. Pestic Biochem Physiol 39:110–120. CrossRefGoogle Scholar
  6. Beaubois E, Girard S, Lallechere S, Davies E, Paladian F, Bonnet P, Ledoigt G, Vian A (2007) Intercellular communication in plants: evidence for two rapidly transmitted systemic signals generated in response to electromagnetic field stimulation in tomato. Plant Cell Environ 30:834–844. CrossRefGoogle Scholar
  7. Bernardini C, Zannoni A, Turba ME, Bacci ML, Forni M, Mesirca P, Remondini D, Castellani G, Bersani F (2007) Effects of 50 Hz sinusoidal magnetic fields on Hsp27, Hsp70, Hsp90 expression in porcine aortic endothelial cells (PAEC). Bioelectromagnetics 28:231–237. CrossRefGoogle Scholar
  8. Blank M, Goodman R (2011) DNA is a fractal antenna in electromagnetic fields. Int J Radiat Biol 87:409–415. CrossRefGoogle Scholar
  9. Bulak P, Lata L, Plak A, Wiącek D, Strobel W, Walkiewicz A, Pietruszewski S, Bieganowski A (2018) Electromagnetic field pretreatment of Sinapis alba seeds improved cadmium phytoextraction. Int J Phytoremediation 20:338–342. CrossRefGoogle Scholar
  10. Çam ST, Seyhan N (2012) Single-strand DNA breaks in human hair root cells exposed to mobile phone radiation. Int J Radiat Biol 88:420–424. CrossRefGoogle Scholar
  11. Çenesiz M, Atakişi O, Akar A, Önbilgin G, Ormanc N (2011) Effects of 900 and 1800 MHz electromagnetic field application on electrocardiogram, nitric oxide, total antioxidant capacity, total oxidant capacity, total protein, albumin and globulin levels in Guinea pigs. Kafkas Univ Vet Fak Derg 17:357–362. Google Scholar
  12. Cermak AMM, Pavicic I, Trosic I (2018) Oxidative stress response in SH-SY5Y cells exposed to short-term 1800 MHz radiofrequency radiation. J Environ Sci Health A 53:132–138. CrossRefGoogle Scholar
  13. Chandel S, Kaur S, Singh HP, Batish DR, Kohli RK (2017) Exposure to 2100 MHz electromagnetic field radiations induces reactive oxygen species generation in Allium cepa roots. J Microsc Ultrastruct 5:225–229. CrossRefGoogle Scholar
  14. Choudhary S, Ansari MYK, Khan Z, Gupta H (2012) Cytotoxic action of lead nitrate on cytomorphology of Trigonella foenum-graecum L. Turk J Biol 36:267–273. Google Scholar
  15. Cretescu I, Rodica C, Velicevici G, Ropciuc S, Buzamat G (2013) Response of barley seedlings to microwaves at 945 MHz. Sci Pap Anim Sci Biotechnol 46:185–191Google Scholar
  16. Cucurachi S, Tamis WLM, Vijver MG, Peijnenburg WJGM, Bolte JFB, de Snoo GR (2013) A review of the ecological effects of radiofrequency electromagnetic fields (RF-EMF). Environ Int 51:116–140. CrossRefGoogle Scholar
  17. De Iuliis GN, Newey RJ, King BV, Aitken RJ (2009) Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro. PLoS One 4:e6446. CrossRefGoogle Scholar
  18. Diem E, Schwarz C, Adlkofer F, Jahn O, Rüdiger H (2005) Non-thermal DNA breakage by mobile-phone radiation (1800 MHz) in human fibroblasts and in transformed GFSH-R17 rat granulosa cells in vitro. Mutat Res 583:178–183. CrossRefGoogle Scholar
  19. Franzellitti S, Valbonesi P, Ciancaglini N, Biondi C, Contin A, Bersani F, Fabbri E (2010) Transient DNA damage induced by high-frequency electromagnetic fields (GSM 1.8 GHz) in the human trophoblast HTR-8/SVneo cell line evaluated with the alkaline comet assay. Mutat Res 683:35–42. CrossRefGoogle Scholar
  20. Friedman J, Kraus S, Hauptman Y, Schiff Y, Seger R (2007) Mechanism of short-term ERK activation by electromagnetic fields at mobile phone frequencies. Biochem J 405:559–568. CrossRefGoogle Scholar
  21. Gustavino B, Carboni G, Petrillo R, Paoluzzi G, Santovetti E, Rizzoni M (2016) Exposure to 915 MHz radiation induces micronuclei in Vicia faba root tips. Mutagenesis 31:187–192. CrossRefGoogle Scholar
  22. Haider T, Knasmueller S, Kundi M, Haider M (1994) Clastogenic effects of radiofrequency radiations on chromosomes of Tradescantia. Mutat Res 324:65–68. CrossRefGoogle Scholar
  23. Hekmat A, Saboury AA, Moosavi-Movahedi AA (2013) The toxic effects of mobile phone radiofrequency (940 MHz) on the structure of calf thymus DNA. Ecotoxicol Environ Saf 88:35–41. CrossRefGoogle Scholar
  24. Jinapang P, Prakob P, Wongwattananard P, Islam NE, Kirawanich P (2010) Growth characteristics of mung beans and water convolvuluses exposed to 425-MHz electromagnetic fields. Bioelectromagnetics 31:519–527. CrossRefGoogle Scholar
  25. Kivrak EG, Yurt KK, Kaplan AA, Alkan I, Altun G (2017) Effects of electromagnetic fields exposure on the antioxidant defense system. J Microsc Ultrastruct 5:167–176. CrossRefGoogle Scholar
  26. Klonowski W (2018) Non-thermal effects of electromagnetic fields in biology and medicine. In: Eskola H, Väisänen O, Viik J, Hyttinen J (eds) EMBEC & NBC 2017. EMBEC 2017, NBC 2017. IFMBE Proceedings, vol 65. Springer, SingaporeGoogle Scholar
  27. Kumar G, Kesarwani S, Sharma V (2003) Clastogenic effect of individual and combined treatment of gamma rays and EMS in Lens culinaris. J Cytol Genet 4:149–154Google Scholar
  28. Kumar A, Singh HP, Batish DR, Kaur S, Kohli RK (2016) EMF radiations (1800 MHz)-inhibited early seedling growth of maize (Zea mays) involves alterations in starch and sucrose metabolism. Protoplasma 253:1043–1049. CrossRefGoogle Scholar
  29. Lai H, Singh NP (1997) Melatonin and N-tert-butyl-α-phenylnitrone block 60-Hz magnetic field-induced DNA single and double strand breaks in rat brain cells. J Pineal Res 22:152–162. CrossRefGoogle Scholar
  30. Pesnya DS, Romanovsky AV (2013) Comparison of cytotoxic and genotoxic effects of plutonium-239 alpha particles and mobile phone GSM 900 radiation in the Allium cepa test. Mutat Res 750:27–33. CrossRefGoogle Scholar
  31. Phillips JL, Ivaschuk O, Ishida-Jones T, Jones RA, Campbell-Beachler M, Haggren W (1998) DNA damage in Molt-4 T-lymphoblastoid cells exposed to cellular telephone radiofrequency fields in vitro. Bioelectrochem Bioenerg 45:103–110. CrossRefGoogle Scholar
  32. Prokhorova IM, Kovaleva MI, Fomicheva AN, Babanazarova OV (2008) Spatial and temporal dynamics of mutagenic activity of water in lake Nero. Inland Water Biol 12:1–25Google Scholar
  33. Rieder CL, Cole R (2000) Microtubule disassembly delays the G2–M transition in vertebrates. Curr Biol 10:1067–1070. CrossRefGoogle Scholar
  34. Roux D, Vian A, Girard S, Bonnet P, Paladian F, Davies E, Ledoigt G (2008) High frequency (900 MHz) low amplitude (5 V m−1) electromagnetic field: a genuine environmental stimulus that affects transcription, translation, calcium and energy charge in tomato. Planta 227:883–891. CrossRefGoogle Scholar
  35. Sharma VP, Singh HP, Kohli RK, Batish DR (2009) Mobile phone radiation inhibits Vigna radiata (mung bean) root growth by inducing oxidative stress. Sci Total Environ 407:5543–5547. CrossRefGoogle Scholar
  36. Singh HP, Sharma VP, Batish DR, Kohli RK (2012) Cell phone electromagnetic field radiations affect rhizogenesis through impairment of biochemical processes. Environ Monit Assess 184:1813–1821. CrossRefGoogle Scholar
  37. Stefi AL, Margaritis LH, Christodoulakis NS (2017) The effect of the non-ionizing radiation on exposed, laboratory cultivated upland cotton (Gossypium hirsutum L.) plants. Flora 226:55–64. CrossRefGoogle Scholar
  38. Stefi AL, Vassilacopoulou D, Margaritis LH, Christodoulakis NS (2018) Oxidative stress and an animal neurotransmitter synthesizing enzyme in the leaves of wild growing myrtle after exposure to GSM radiation. Flora 243:67–76. CrossRefGoogle Scholar
  39. Sykes PJ, McCallum BD, Bangay MJ, Hooker AM, Morley AA (2001) Effect of exposure to 900 MHz radiofrequency radiation on intrachromosomal recombination in pKZ1 mice. Radiat Res 156:495–502.[0495.EOETMR]2.0CO:2Google Scholar
  40. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221.;2-J CrossRefGoogle Scholar
  41. Tkalec M, Malarić K, Pevalek-Kozlina B (2005) Influence of 400, 900, and 1900 MHz electromagnetic fields on Lemna minor growth and peroxidase activity. Bioelectromagnetics 26:185–193. CrossRefGoogle Scholar
  42. Tkalec M, Malarić K, Pavlica M, Pevalek-Kozlina B, Vidaković-Cifrek Ž (2009) Effects of radiofrequency electromagnetic fields on seed germination and root meristematic cells of Allium cepa L. Mutat Res 672:76–81. CrossRefGoogle Scholar
  43. Tkalec M, Štambuk A, Šrut M, Malarić K, Klobučar GI (2013) Oxidative and genotoxic effects of 900 MHz electromagnetic fields in the earthworm Eisenia fetida. Ecotoxicol Environ Saf 90:7–12. CrossRefGoogle Scholar
  44. Verschaeve L, Slaets D, Van Gorp U, Maes A, Vanderkom J (1994) In vitro and in vivo genetic effects of microwaves from mobile phone frequencies in human and rat peripheral blood lymphocytes. In: Simunic D (ed) Proceedings of cost 244 meetings on mobile communication and extremely low frequency field: instrumentation and measurements in bioelectromagnetics research, Information Venture Inc., Plzen, pp 74–83Google Scholar
  45. Verschaeve L, Juutilainen J, Lagroye I, Miyakoshi J, Saunders R, De Seze R, Tenforde T, Van Rongen E, Veyret B, Xu Z (2010) In vitro and in vivo genotoxicity of radiofrequency fields. Mutat Res 705:252–268. CrossRefGoogle Scholar
  46. Vian A, Davies E, Gendraud M, Bonnet P (2016) Plant responses to high frequency electromagnetic fields. Biomed Res Int Article ID 1830262, 13 pages.
  47. Vijayalaxmi, Scarfi MR (2014) International and national expert group evaluations: biological/health effects of radiofrequency fields. Int J Environ Res Public Health 11:9376–9408. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Shikha Chandel
    • 1
  • Shalinder Kaur
    • 1
    Email author
  • Mohd Issa
    • 2
  • Harminder Pal Singh
    • 2
  • Daizy Rani Batish
    • 1
  • Ravinder Kumar Kohli
    • 1
    • 3
  1. 1.Department of BotanyPanjab UniversityChandigarhIndia
  2. 2.Department of Environment StudiesPanjab UniversityChandigarhIndia
  3. 3.Central University of PunjabBathindaIndia

Personalised recommendations