pp 1–18 | Cite as

Pest and natural enemy: how the fat bodies of both the southern armyworm Spodoptera eridania and the predator Ceraeochrysa claveri react to azadirachtin exposure

  • Elton Luiz Scudeler
  • Ana Silvia Gimenes Garcia
  • Carlos Roberto Padovani
  • Daniela Carvalho dos SantosEmail author
Original Article


The effects of biopesticides on insects can be demonstrated by morphological and ultrastructural tools in ecotoxicological analysis. Azadirachtin-based products are widely used as biopesticides, affecting numerous insect populations. Through morphological biomarkers, this study aimed to characterize the fat bodies of both the southern armyworm Spodoptera eridania and the predator Ceraeochrysa claveri after chronic exposure to azadirachtin. Larvae of S. eridania and C. claveri were fed with fresh purple lettuce leaves (Lactuca sativa) and egg clusters of Diatraea saccharalis treated with azadirachtin solution of 6 mg active ingredient (a.i.)/L and 18 mg a.i./L for 7 days, respectively. The biological data showed a significant reduction in survival and body mass in S. eridania and cytotoxic effects in the parietal and perivisceral fat bodies in both species. Ultrastructural cell damage was observed in the trophocytes of both species such as dilated cisternae of the rough endoplasmic reticulum and swollen mitochondria. Trophocytes of S. eridania and C. claveri of the parietal and perivisceral layers responded to those injuries by different cytoprotective and detoxification means such as an increase in the amount of cytoplasmic granules containing calcium, expression of heat shock protein (HSP)70/HSP90, and development of the smooth endoplasmic reticulum. Despite all the different means of cytoprotection and detoxification, they were not sufficient to recover from all the cellular damages. Azadirachtin exhibited an excellent performance for the control of S. eridania and a moderate selectivity for the predator C. claveri, which presents better biological and cytoprotective responses to chronic exposure to azadirachtin.


Biopesticide Cytotoxicity Insect Morphology Ultrastructure 



We are grateful to the Electron Microscopy Center of the Institute of Biosciences of Botucatu, UNESP.


This study was supported and funded by the São Paulo Research Foundation (Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)) (2014/15016-2).

Compliance with ethical standards

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Adamski Z (2007) Exposure to cabaryl leads to ultrastructural changes and alters activity of antioxidant enzymes in Spodoptera exigua (Lepidoptera: Noctuidae). Invert Biol 126(2):191–201Google Scholar
  2. Adamski Z, Banaszkiewicz M, Ziemnicki K (2005) Ultrastructural alterations induced by fenitrothion on fat body cells and midgut cells of Tenebrio molitor L. (Insecta, Coleoptera) larvae. J Biol Res 3:15–22Google Scholar
  3. Adamski A, Radtke K, Kopiczko A, Chowanski S, Marciniak P, Szymczak M, Spochacz M, Falabella P, Lelario F, Scrano L, Bufo SA (2016) Ultrastructural and developmental toxicity of potato and tomato leaf extracts to beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae). Microsc Res Tech 79:948–958. Google Scholar
  4. Aggarwal N, Brar DS (2006) Effects of different neem preparations in comparison to synthetic insecticides on the whitefly parasitoid Encarsia sophia (Hymenoptera: Aphelinidae) and the predator Chrysoperla carnea (Neuroptera: Chrysopidae) on cotton under laboratory conditions. J Pest Sci 79:201–207. Google Scholar
  5. Ahmad M, Oβiewatsch HR, Basedow T (2003) Effects of neem-treated aphids as food/hosts on their predators and parasitoids. J Appl Entomol 127:458–464Google Scholar
  6. Alves SN, Serrão JE, Melo AL (2010) Alterations in the fat body and midgut of Culex quinquefasciatus following exposure to different insecticides. Micron 41:592–597. Google Scholar
  7. Amirmohammadi F, Sendi JJ, Zibaee A (2012) Toxicity and physiological effect of essential oil of Artemisia annua (Labiatae) on Agriolimax agrestis L. (Stylommatophora: Limacidae). J Plant Prot Res 52(2):185–189Google Scholar
  8. Arrese EL, Soulages JL (2010) Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol 55:207–225. Google Scholar
  9. Bierkens JGEA (2000) Applications and pitfalls of stress-proteins in biomonitoring. Toxicology 153:61–72Google Scholar
  10. Buckner JS, Henderson TA, Ehresmann DD, Graf G (1990) Structure and composition of urate storage granules from the fat body of Manduca sexta. Insect Biochem 20(2):203–214Google Scholar
  11. Büyükgüzel E, Büyükgüzel K, Snela M, Erdem M, Radtke K, Ziemnicki K, Adamski Z (2013) Effect of boric acid on antioxidant enzyme activity, lipid peroxidation, and ultrastructure of midgut and fat body of Galleria mellonela. Cell Biol Toxicol 29:117–129. Google Scholar
  12. Campos EVR, Oliveira JL, Pascoli M, Lima R, Fraceto LF (2016) Neem oil and crop protection: from now to the future. Front Plant Sci 7:1494. Google Scholar
  13. Carvalho RBR, Andrade FG, Levy SM, Moscardi F, Falleiros AMF (2013) Histology and ultrastructure of the fat body of Anticarsia gemmatalis (Hübner, 1818) (Lepidoptera: Noctuidae). Braz Arch Biol Technol 56(2):303–310Google Scholar
  14. Catae AF, Roat TC, Oliveira RA, Nocelli RCF, Malaspina O (2014) Cytotoxic effects of thiamethoxan in the midgut and malpighian tubules of africanized Apis mellifera (Hymenoptera: Apidae). Microsc Res Tech 77:274–281. Google Scholar
  15. Cerella C, Diederich M, Ghibelli L (2010) The dual role of calcium as messenger and stressor in cell damage, death, and survival. Int J Cell Biol 2010:546163–546114. Google Scholar
  16. Cheville NF (1994) Ultrastructural pathology: an introduction to interpretation. Iowa State University PressGoogle Scholar
  17. Cheville NF (2009) Ultrastructural pathology: the comparative cellular basis of disease. Wiley-BlackwellGoogle Scholar
  18. Chowanski S, Lubawy J, Paluch-Lubawa E, Spochacz M, Rosinski G, Stocinska M (2017) The physiological role of fat body and muscle tissues in response to cold stress in the tropical cockroach Gromphadorhina coquereliana. PloSOne 12(3):e0173100. Google Scholar
  19. Cloyd RA (2012) Indirect effects of pesticides on natural enemies. In: Soundararajan RP (ed) Pesticides-advances in chemical and botanical pesticides. Intech, Rijeka, pp 127–150. Google Scholar
  20. Cordeiro EMG, Corrêa AS, Venzon M, Guedes RNC (2010) Insecticide survival and behavioral avoidance in the lacewings Chrysoperla externa and Ceraeochrysa cubana. Chemosphere 81:1352–1357. Google Scholar
  21. Cunha FM, Wanderley-Teixeira V, Teixeira AAC, Alves LC (2016) Ultrastructure and histochemistry of the fat body of Anthonomus grandis (Coleoptera: Curculionidae). Invert Reprod Devel.
  22. De Freitas S, Penny ND (2001) The green lacewings (Neuroptera: Chrysopidae) of Brazilian agro-ecossystems. Proc Calif Acad Sci 52(19):245–395Google Scholar
  23. Domingues CEC, Abdalla FC, Balsamo PJ, Pereira BVR, Hausen MA, Costa MJ, Silva-Zacarin ECM (2017) Thiamethoxam and picoxystrobin reduce the survival and overload the hepato-nephrocitic system of the Africanized honeybee. Chemosphere 186:994–1005. Google Scholar
  24. Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282Google Scholar
  25. Ferreira RAC, Silva Zacarin ECM, Malaspina O, Bueno OC, Tomotake MEM, Pereira AM (2013) Cellular responses in the Malpighian tubules of Scaptotrigona postica (Latreille, 1807) exposed to low doses of fipronil and boric acid. Micron 46:57–65. Google Scholar
  26. Fontanetti CS, Nogarol LR, Souza RB, Perez DG, Mazivieiro GT (2011) Bioindicators and biomarkers in the assessment of soil toxicity. In: Pascucci S (ed) Soil contamination. Intech, pp 143–168.
  27. Garcia ASG, Scudeler EL, Pinheiro PFF, Santos DC (2018) Can exposure to neem oil affect the spermatogenesis of predator Ceraeochrysa claveri? Protoplasma.
  28. Goodman LA (1964) Simultaneous confidence intervals for contrasts among multinomial populations. Ann Math Stat 35(2):716–725Google Scholar
  29. Goodman LA (1965) On simultaneous confidence intervals for multinomial proportions. Technometrics 7(2):247–254Google Scholar
  30. Haunerland NH, Shirk PD (1995) Regional and functional differentiation in the insect fat body. Annu Rev Entomol 40:121–145Google Scholar
  31. Hoyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G, Farkas T, Bianchi K, Fehrenbacher N, Elling F, Rizzuto R, Mathiasen IS, Jäättelä M (2007) Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-β, and Bcl-2. Mol Cell 25:193–205. Google Scholar
  32. Johnson RA, Wichern DW (2007) Applied multivariate statistical analysis. Prentice Hall, Upper Saddle RiverGoogle Scholar
  33. Junqueira LCU, Junqueira LMMS (1983) Técnicas básicas de citologia e histologia. Livraria Editora Santos, São PauloGoogle Scholar
  34. Lanneau D, Brunet M, Frisan E, Solary E, Fontenay M, Garrido C (2008) Heat shock proteins: essential proteins for apoptosis regulation. J Cell Mol Med 12(3):743–761Google Scholar
  35. Lima de Souza JR, Remedio RN, Arnosti A, Abreu RMM, Camargo-Mathias MI (2017) The effects of neem oil (Azadirachta indica A. JUSS) enriched with different concentrations of azadirachtin on the integument of semi-engorged Rhipicephalus sanguineus sensu lato (Acari: Ixodidae) females. Microsc Res Tech 80:838–844. Google Scholar
  36. Lin T, Liu Q, Chen J (2016) Identification of differentially expressed genes in Monochamus alternatus digested with azadirachtin. Sci Rep 6:33484. Google Scholar
  37. Lycett GJ, McLaughlin LA, Ranson H, Hemingway J, Kafatos FC, Loukeris TG, Paine MJI (2006) Anopheles gambiae P450 reductase is highly expressed in oenocytes and in vivo knockdown increases permethrin susceptibility. Insect Mol Biol 15(3):321–327Google Scholar
  38. Malaspina O, Silva-Zacarin ECM (2006) Cell markers for ecotoxicological studies in target organs of bees. Braz J Morphol Sci 23:303–309Google Scholar
  39. MAPA (Ministério da Agricultura, Pecuária e Abastecimento) (2018) Agrofit. Coordenação Geral de Agrotóxicos e Afins/DFIA/DAS, Brasília, DF, Brazil. Accessed 2 July 2018
  40. Martins GF, Ramalho-Ortigão JM (2012) Oenocytes in insects. Invert Surv J 9:139–152Google Scholar
  41. Martins GF, Serrão JE, Ramalho-Ortigão JM, Pimenta PFP (2011) Histochemical and ultrastructural studies of the mosquito Aedes aegypti fat body: effects of aging and diet type. Microsc Res Tech 74:1032–1039. Google Scholar
  42. Medina P, Smagghe G, Budia F, Tirry L, Viñuela E (2003) Toxicity and absorption of azadirachtin, diflubenzuron, pyriproxyfen, and tebufenozide after topical application in predatory larvae of Chrysoperla carnea (Neuroptera: Chrysopidae). Environ Entomol 32:196–203Google Scholar
  43. Montezano DG, Specht A, Sosa-Gómez DR, Roque-Specht VF, Barros NM (2014) Immature stages of Spodoptera eridania (Lepidoptera: Nocutidae): developmental parameters and host plants. J Insect Sci 14(238).
  44. Mordue (Luntz) AJ, Nisbet AJ (2000) Azadirachtin from the neem tree Azadirachta indica: its action against insects. An Soc Entomol Bras 29:615–632Google Scholar
  45. Mordue (Luntz) AJ, MSJ S, Ley SV, Blaney WM, Mordue W, Nasiruddin M, Nisbet AJ (1998) Actions of azadirachtin, a plant allelochemical, against insects. Pestic Sci 54:277–284Google Scholar
  46. Morgan ED (2009) Azadirachtin, a scientific gold mine. Bioorg Med Chem 17:4096–4105. Google Scholar
  47. Nasiruddin M, Mordue (Luntz) AJ (1993) The effect of azadirachtin on the midgut histology of the locusts Schistocerca gregaria and Locusta migratoria. Tissue Cell 25(6):875–884Google Scholar
  48. Nogarol LR, Fontanetti CS (2010) Acute and subchronic exposure of diplopods to substrate containing sewage mud: tissular responses of the midgut. Micron 41:239–246. Google Scholar
  49. Paes de Oliveira VT, Cruz-Landim C (2003) Morphology and function of insect fat body cells: a review. Biociências 11(2):195–205Google Scholar
  50. Pappas ML, Broufas GD, Koveos DS (2011) Chrysopid predators and their role in biological control. J Entomol 8(3):301–326Google Scholar
  51. Park MS, Park P, Takeda M (2013) Roles of fat body trophocytes, mycetocytes and urocytes in the American cockroach, Periplaneta Americana under starvation conditions: an ultrastructural study. Arthropod Struct Dev 42:287–295. Google Scholar
  52. Pearse AGE (1972) Histochemistry: theoretical and applied. Churchill Livingtsone, EdinburghGoogle Scholar
  53. Pino RM, Pino LC, Bankston PW (1981) The relationships between the Golgi apparatus, GERL, and lysosomes of fetal rat liver kupffer cells examined by ultrastructural phosphatase cytochemistry. J Histochem Cytochem 29:1061–1070Google Scholar
  54. Poiani SB, Cruz-Landim C (2012) Storaged products and presence of acid phosphatase in fat body cells at pre-pupal worker stage of Apis mellifera Linnaeus, 1758 (Hymenoptera, Apidae). Micron 43:475–478. Google Scholar
  55. Reinecke M, Walther C (1978) Aspects of turnover and biogenesis of synaptic vesicles at locust neuromuscular junctions as revealed by zinc iodide-osmium tetroxide (ZIO) reacting with intravesicular SH-groups. J Cell Biol 78:839–855Google Scholar
  56. Remedio RN, Nunes PH, Anholeto LA, Oliveira PR, Sá ICG, Camargo-Mathias MI (2016) Morphological alterations in salivary glands of Rhipicephalus sanguineus ticks (Acari: Ixodidae) exposed to neem oil with known azadirachtin concentration. Micron 83:19–31. Google Scholar
  57. Roel AR, Dourado DM, Matias R, Porto KRA, Bednaski AV, Costa RB (2010) The effect of sub-lethal doses of Azadirachta indica (Meliaceae) oil on the midgut of Spodoptera frugiperda (Lepidoptera: Noctuidae). Rev Bras Entomol 54:505–510Google Scholar
  58. Roma GC, Bueno OC, Camargo-Mathias MI (2010) Morpho-physiological analysis of insect fat body: a review. Micron 41:395–401Google Scholar
  59. Santos KB, Meneguim AM, Neves PMOJ (2005) Biologia de Spodoptera eridania (Cramer) (Lepidoptera: Noctuidae) em diferentes hospedeiros. Neotrop Entomol 34(6):903–910Google Scholar
  60. Schmutterer H (1990) Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Annu Rev Entomol 35:271–297Google Scholar
  61. Scudeler EL, Santos DC (2013) Effects of neem oil (Azadirachta indica A. Juss) on midgut cells of predatory larvae Ceraeochrysa claveri (Navás, 1911) (Neuroptera: Chrysopidae). Micron 44:125–132. Google Scholar
  62. Scudeler EL, Garcia ASG, Padovani CR, Santos DC (2013) Action of neem oil (Azadirachta indica A. Juss) on cocoon spinning in Ceraeochrysa claveri (Neuroptera: Chrysopidae). Ecotoxicol Environ Saf 97:176–182. Google Scholar
  63. Scudeler EL, Padovani CR, Santos DC (2014) Effects of neem oil (Azadirachta indica A. Juss) on the replacement of the midgut epithelium in the lacewing Ceraeochrysa claveri during larval-pupal metamorphosis. Acta Histochem 116:771–780. Google Scholar
  64. Scudeler EL, Garcia ASG, Padovani CR, Pinheiro PFF, Santos DC (2016a) Cytotoxic effects of neem oil in the midgut of the predator Ceraeochrysa claveri. Micron 80:96–111. Google Scholar
  65. Scudeler EL, Garcia ASG, Padovani CR, Pinheiro PFF, Santos DC (2016b) Are the biopesticide neem oil and the predator Ceraeochrysa claveri (Navás, 1911) compatible? J Entomol Zool Stud 4(2):340–346Google Scholar
  66. Shannag HK, Capinera JL, Freihat NM (2015) Effects of neem-based insecticides on consumption and utilization of food in larvae of Spodoptera eridania (Lepidoptera: Noctuidae). J Insect Sci 15(1):152. Google Scholar
  67. Shu Y, Du Y, Wang J (2011) Molecular characterization and expression patterns of Spodoptera litura heat shock protein 70/90, and their response to zinc stress. Comp Biochem Physiol 158:102–110. Google Scholar
  68. Silva-Zacarin ECM, Gregorc A, Moraes RLMS (2006) In situ localization of heat-shock proteins and cell death labelling in the salivary gland of acaricide-treated honeybee larvae. Apidologie 37:507–516. Google Scholar
  69. Souza TS, Fontanetti CS (2011) Morphological biomarkers in the Rhinocricus padbergi midgut exposed to contaminated soil. Ecotoxicol Environ Saf 74:10–18Google Scholar
  70. Specht A, Montezano DG, Sosa-Gómez DR, Paula-Moraes SV, Roque-Specht VF, Barros NM (2016) Reproductive potential of Spodoptera eridania (Stoll) (Lepidoptera: Noctuidae) in the laboratory: effect of multiple couples and the size. Braz J Biol 76(2):526–530. Google Scholar
  71. Tong Y, Song F (2015) Intracellular calcium signaling regulates autophagy via calcineurin-mediated TFEB dephosphorylation. Autophagy 11(7):1192–1195. Google Scholar
  72. Valizadeh B, Sendi JJ, Zibaee A, Oftadeh M (2013) Effect of neem based insecticide Achook® on mortality, biological and biochemical parameters of elm leaf beetle Xanthogaleruca luteola (Col: Chrysomelidae). J Crop Prot 2(3):319–330Google Scholar
  73. Wang X, Chen M, Zhou J, Zhang X (2014) HSP27, 70 and 90, anti-apoptotic proteins, in clinical cancer therapy (review). Int J Oncol 45:18–30. Google Scholar
  74. Zar JH (2009) Biostatistical analysis. Prentice Hall, Upper Saddle RiverGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Insects, Department of Morphology, Institute of Biosciences of BotucatuSão Paulo State University (UNESP)BotucatuBrazil
  2. 2.Department of Biostatistics, Institute of Biosciences of BotucatuSão Paulo State University (UNESP)BotucatuBrazil
  3. 3.Electron Microscopy Center, Institute of Biosciences of BotucatuSão Paulo State University (UNESP)BotucatuBrazil

Personalised recommendations