Advertisement

Protoplasma

pp 1–9 | Cite as

Ultrastructure of the vasa deferentia of Terrobittacus implicatus and Cerapanorpa nanwutaina (Insecta: Mecoptera)

  • Qi-Hui Lyu
  • Bao-Zhen HuaEmail author
Original Article
  • 32 Downloads

Abstract

The fine structures of vasa deferentia and postvesicular vasa deferentia were investigated in the hangingfly Terrobittacus implicatus (Cai et al. 2006) and the scorpionfly Cerapanorpa nanwutaina (Chou 1981) using light and transmission electron microscopy, and schematic diagrams were drawn accordingly. The vasa deferentia of both species comprise muscular layers, a basal lamina, and a mono-layered epithelium, but the postvesicular vasa deferentia contain muscular layers, a basal lamina, a single-layered epithelium, a subcuticular cavity, and an inner cuticle respectively. The vas deferens releases secretions into the lumen directly, probably by means of merocrine production. On the contrary, the cells of the postvesicular vas deferens correspond to class I glandular cells, discharging secretions into the subcuticular cavity first, and then into the lumen through an inner cuticle. The epithelium in both structures of Bittacidae is well developed and contains more microvilli, organelles, and more types of secretions than in Panorpidae. In Panorpidae, the spine of the postvesicular vas deferens may serve as a barricade for the reflow of the sperm and to protect the extraordinarily long structure from being collapsed or injured.

Keywords

Vas deferens Male reproductive system Morphology Bittacidae Panorpidae 

Notes

Acknowledgements

We thank Lu Liu and Ying Miao for the assistance in specimen collection and Xiao-Jun Fan, Mi Huo, and Ke-Rang Huang for the assistance in transmission electron microscopy.

Funding information

This work was funded by the National Natural Science Foundation of China (grant no. 31672341).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with animals and human participants performed by any of the authors.

References

  1. Araújo VA, Zama U, Neves CA, Dolder H, Lino-Neto J (2005) Ultrastructural, histological and histochemical characteristics of the epithelial wall of the seminal vesicle of mature Scaptotrigona xanthotricha Moure males (Hymenoptera, Apidae, Meliponini). Braz J Morphol Sci 22:193–201. http://host-article-assets.s3.amazonaws.com/jms/587cb45b7f8c9d0d058b461c/fulltext.pdf
  2. Bissell TL (1937) Structure of the reproductive system of the pecan weevil (Curculionidae). Ann Entomol Soc Am 30:242–251.  https://doi.org/10.1093/aesa/30.2.242 CrossRefGoogle Scholar
  3. Brito P, Salles FF, Dolder H (2011) Characteristics of the male reproductive system and spermatozoa of Leptophlebiidae (Ephemeroptera). Neotrop Entomol 40:103–107.  https://doi.org/10.1590/S1519-566X2011000100015 CrossRefGoogle Scholar
  4. Brito P, Salles FF, Dolder H (2012) Morphology of male reproductive systems in Ephemeroptera: intrinsic musculature. Neotrop Entomol 41:306–310.  https://doi.org/10.1007/s13744-012-0039-7 CrossRefGoogle Scholar
  5. Byers GW, Thornhill R (1983) Biology of the Mecoptera. Annu Rev Entomol 28:203–228.  https://doi.org/10.1146/annurev.en.28.010183.001223 CrossRefGoogle Scholar
  6. Cai L-J, Huang P-Y, Hua B-Z (2006) Two new Chinese Bittacus Latreille (Mecoptera: Bittacidae) from Michangshan Mountains. Entomotaxonomia 28:127–130.Google Scholar
  7. Chapman RF (2013) The insects: structure and function, 5th edn. Cambridge University Press, CambridgeGoogle Scholar
  8. Chen J, Tan J-L, Hua B-Z (2013) Review of the Chinese Bittacus (Mecoptera: Bittacidae) with descriptions of three new species. J Nat Hist 47:1463–1480.  https://doi.org/10.1080/00222933.2012.763065 CrossRefGoogle Scholar
  9. Chou I, Ran R-B, Wang S-M (1981) Taxonomic study of the Chinese Mecoptera (I, II). Entomotaxonomia 3:1–22.Google Scholar
  10. Cooper KW (1972) A Southern California Boreus, B. notoperates n. sp. I. Comparative morphology and systematics (Mecoptera: Boreidae). Psyche 79:269–283. https://doi.org/10.1155/1972/56294Google Scholar
  11. Dallacqua RP, Landim CC (2003) Ultrastructure of the ducts of the reproductive tract of males of Melipona bicolor bicolor Lepeletier (Hymenoptera, Apinae, Meliponini). Anat Histol Embryol 32:276–281.  https://doi.org/10.1046/j.1439-0264.2003.00484.x CrossRefGoogle Scholar
  12. Dallai R, Marchini D, Callaini G (1988) Microtubule and microfilament distribution during the secretory activity of an insect gland. J Cell Sci 91:563–570. http://jcs.biologists.org/content/91/4/563Google Scholar
  13. Dustin P (1985) Microtubules, 2nd edn. Springer-Verlag, New YorkGoogle Scholar
  14. Filimonova SA (2016) Morpho-functional variety of the coxal glands in cheyletoid mites (Prostigmata). I. Syringophilidae. Arthropod Struct Dev 45:356–367.  https://doi.org/10.1016/j.asd.2016.06.005 CrossRefGoogle Scholar
  15. Freitas SPC, Gonçalves TCM, Serrão JE, Costa J, Santos-Mallet JR (2010) Male reproductive system structure and accessory glands ultrastructure of two species of Triatoma (Hemiptera, Reduviidae, Triatominae). Micron 41:518–525.  https://doi.org/10.1016/j.micron.2010.01.008 CrossRefGoogle Scholar
  16. Friele A (1930) Die postembryonale Entwicklungsgeschichte der männlichen Geschlechtsorgane und Ausführungswege von Psychoda alternata Say. Z Morph Ökol Tiere 18:249–288.  https://doi.org/10.1007/BF00419211.pdf CrossRefGoogle Scholar
  17. Gao Q-H, Hua B-Z (2013) Co-evolution of the mating position and male genitalia in insects: a case study of a hangingfly. PLoS One 8:e80651.  https://doi.org/10.1371/journal.pone.0080651 CrossRefGoogle Scholar
  18. Gerber GH, Church NS, Rempel JG (1971) The anatomy, histology, and physiology of the reproductive systems of Lytta nuttalli Say (Coleoptera: Meloidae). I. The internal genitalia. Can J Zool 49:523–533.  https://doi.org/10.1139/z71-080 CrossRefGoogle Scholar
  19. Gomes LF, Badke JP, Zama U, Dolder H, Lino-Neto J (2012) Morphology of the male reproductive system and spermatozoa in Centris Fabricius, 1804 (Hymenoptera: Apidae, Centridini). Micron 43:695–704.  https://doi.org/10.1016/j.micron.2012.01.013 CrossRefGoogle Scholar
  20. Grell KG (1942) Der Genitalapparat von Panorpa communis L. Zool Jb Anat 67:513–588Google Scholar
  21. Huang F, Yu R-X, Chen X-X (2007) Ultrastructure of the male reproductive system of Cotesia vestalis (Hymenoptera: Braconidae) with preliminary characterization of the secretions. Microsc Res Techn 70:563–571.  https://doi.org/10.1002/jemt.20435 CrossRefGoogle Scholar
  22. Karakaya G, Özyurt N, Candan S, Suludere Z (2012) Structure of the male reproductive sytem in Coreus marginatus (L.) (Hemiptera: Coreidae). Türk Entomol Derg 36:193–204. http://dergipark.gov.tr/entoted/issue/5695/76134Google Scholar
  23. Kölsch G (2000) The ultrastructure of glands and the production and function of the secretion in the adhesive capture apparatus of Stenus species (Coleoptera: Staphylinidae). Can J Zool 78:465–475.  https://doi.org/10.1139/z99-213 CrossRefGoogle Scholar
  24. Krüger S, Ferenz H-J, Randall M, Hodgson AN (2014) Structure of the male reproductive accessory glands of Pterostichus nigrita (Coleoptera: Carabidae), their role in spermatophore formation. Invertebr Reprod Dev 58:75–88.  https://doi.org/10.1080/07924259.2013.822835 CrossRefGoogle Scholar
  25. Landim CC, Dallacqua RP (2005) Morphology and protein patterns of honey bee drone accessory glands. Genet Mol Res 4:473–481. https://www.geneticsmr.com/year2005/vol4-3/pdf/gmr0104.pdfGoogle Scholar
  26. Ledbetter MC, Porter HR (1963) A “microtubule” in plant cell fine structure. J Cell Biol 19:239–250.  https://doi.org/10.1083/jcb.19.1.239 CrossRefGoogle Scholar
  27. Liu N-Y, Wu G-X, Ze S-Z, Yang B, Zhu J-Y (2017) Morphology and ultrastructure of the male reproductive system of the jewel wasp, Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae). J Asia Pac Entomol 20:577–582.  https://doi.org/10.1016/j.aspen.2017.03.017 CrossRefGoogle Scholar
  28. Lyu Q-H, Zhang B-B, Hua B-Z (2018) Ultrastructure and function of the seminal vesicle of Bittacidae (Insecta: Mecoptera). Arthropod Struct Dev 47:173–179.  https://doi.org/10.1016/j.asd.2018.02.001 CrossRefGoogle Scholar
  29. Marchini D, Brundo MV, Sottile L, Viscuso R (2009) Structure of male accessory glands of Bolivarius siculus (Fischer) (Orthoptera, Tettigoniidae) and protein analysis of their secretions. J Morphol 270:880–891.  https://doi.org/10.1002/jmor.10727 CrossRefGoogle Scholar
  30. Matsuda R (1976) Morphology and evolution of the insect abdomen: with special reference to developmental patterns and their bearings upon systematics. Pergamon Press, New YorkGoogle Scholar
  31. Miyaké T (1913) Studies on the Mecoptera of Japan. J Coll Agric Tokyo Imp 4:265–400Google Scholar
  32. Moors L, Spaas O, Koeniger G, Billen J (2005) Morphological and ultrastructural changes in the mucus glands of Apis mellifera drones during pupal development and sexual maturation. Apidologie 36:245–254.  https://doi.org/10.1051/apido:2005016 CrossRefGoogle Scholar
  33. Noirot C, Quennedey A (1974) Fine structure of insect epidermal glands. Annu Rev Entomol 19:61–80.  https://doi.org/10.1146/annurev.en.19.010174.000425 CrossRefGoogle Scholar
  34. Özyurt N, Candan S, Suludere Z (2013) The morphology and histology of the male reproductive system in Dolycoris baccarum Linnaeus 1758 (Heteroptera: Pentatomidae)—light and scanning electron micoscope studies. Micron 44:101–106.  https://doi.org/10.1016/j.micron.2012.04.017 CrossRefGoogle Scholar
  35. Özyurt N, Candan S, Suludere Z (2015) Ultrastructure of male reproductive system of Eurydema ventrale Kolenati 1846 (Heteroptera: Pentatomidae). Microsc Res Techn 78:643–653.  https://doi.org/10.1002/jemt.22514 CrossRefGoogle Scholar
  36. Paoli F, Dallai R, Cristofaro M, Arnone S, Francardi V, Roversi PF (2014) Morphology of the male reproductive system, sperm ultrastructure and γ-irradiation of the red palm weevil Rhynchophorus ferrugineus Oliv. (Coleoptera: Dryophthoridae). Tissue Cell 46:274–285.  https://doi.org/10.1016/j.tice.2014.06.003 CrossRefGoogle Scholar
  37. Penny ND, Byers GW (1979) A check-list of the Mecoptera of the world. Acta Amazon 9:365–388.  https://doi.org/10.1590/1809-43921979092365 CrossRefGoogle Scholar
  38. Potter E (1938) The internal anatomy of the order Mecoptera. Trans R Entomol Soc Lond 87:467–501.  https://doi.org/10.1111/j.1365-2311.1938.tb00726.x CrossRefGoogle Scholar
  39. Quennedey A (1998) Insect epidermal gland cells: ultrastructure and morphgenesis vol Insecta. In: Harrison FW, Locke M (eds) Microscopic anatomy of invertebrates, vol 11A. Wiley-Liss, New York, pp 177–207Google Scholar
  40. Radhakrishnan P, Marchini D, Taylor PW (2009) Ultrastructure of male reproductive accessory glands and ejaculatory duct in the Queensland fruit fly, Bactrocera tryoni (Diptera: Tephritidae). Arthropod Struct Dev 38:216–226.  https://doi.org/10.1016/j.asd.2008.09.004 CrossRefGoogle Scholar
  41. Riemann JG, Giebultowicz JM (1992) Sperm maturation in the vasa deferentia of the gypsy moth, Lymantria dispar L. (Lepidoptera: Lymantriidae). Int J Insect Morphol Embryol 21:271–284.  https://doi.org/10.1016/0020-7322(92)90022-F CrossRefGoogle Scholar
  42. Riemann JG, Thorson BJ (1976) Ultrastructure of the vasa deferentia of the Mediterranean flour moth. J Morphol 149:483–505.  https://doi.org/10.1002/jmor.1051490404 CrossRefGoogle Scholar
  43. Satir P, Stuart AM (1965) A new apical microtubule-associated organelle in the sternal gland of Zootermopsis nevadensis (Hagen), Isoptera. J Cell Biol 24:277–283.  https://doi.org/10.1083/jcb.24.2.277 CrossRefGoogle Scholar
  44. Setty LR (1940) Biology and morphology of some North American Bittacidae (Order Mecoptera). Am Midl Nat 23:257–353.  https://doi.org/10.2307/2420667 CrossRefGoogle Scholar
  45. Shen J, Hua B-Z (2013) Fine structures of the ejaculatory sac and sperm pump of the scorpionfly Panorpa liui Hua (Mecoptera: Panorpidae). Micron 51:41–47.  https://doi.org/10.1016/j.micron.2013.06.007 CrossRefGoogle Scholar
  46. Sinclair BJ, Borkent A, Wood DM (2007) The male genital tract and aedeagal components of the Diptera with a discussion of their phylogenetic significance. Zool J Linnean Soc 150:711–742.  https://doi.org/10.1111/j.1096-3642.2007.00314.x CrossRefGoogle Scholar
  47. Snodgrass RE (1935) Principles of insect morphology. McGraw Hill, New YorkGoogle Scholar
  48. Šobotník J, Kutalová K, Vytisková B, Roisin Y, Bourguignon T (2014) Age-dependent changes in ultrastructure of the defensive glands of Neocapritermes taracua workers (Isoptera, Termitidae). Arthropod Struct Dev 43:205–210.  https://doi.org/10.1016/j.asd.2014.02.003 CrossRefGoogle Scholar
  49. Steiner P (1937) Beitrag zur Fortpflanzungsbiologie und Morphologie des Genitalapparates von Boreus hiemalis L. Z Morph Ökol Tiere 32:276–288.  https://doi.org/10.1007/BF00403076 CrossRefGoogle Scholar
  50. Sturm R (2008) Morphology and histology of the ductus receptaculi and accessory glands in the reproductive tract of the female cricket, Teleogryllus commodus. J Insect Sci 8:1–12.  https://doi.org/10.1673/031.008.3501 CrossRefGoogle Scholar
  51. Tan J-L, Hua B-Z (2009) Terrobittacus, a new genus of the Chinese Bittacidae (Mecoptera) with descriptions of two new species. J Nat Hist 43:2937–2954. https://doi.org/10.1080/00222930903359628Google Scholar
  52. Viscuso R, Brundo MV, Sottile L (2005) Ultrastructural organization of the seminal vesicles of Baculum thaii (Phasmida, Phasmatidae) during sexual maturity. Ital J Zool 72:113–119.  https://doi.org/10.1080/11250000509356661 CrossRefGoogle Scholar
  53. Wheeler DE, Krutzsch PH (1992) Internal reproductive system in adult males of the genus Camponotus (Hymenoptera: Formicidae: Formicinae). J Morphol 211:307–317.  https://doi.org/10.1002/jmor.1052110308 CrossRefGoogle Scholar
  54. Wieczorek K, Świątek P (2008) Morphology and ultrastructure of the male reproductive system of the woolly beech aphid Phyllaphis fagi (Hemiptera: Aphididae: Phyllaphidinae). Eur J Entomol 105:707–712.  https://doi.org/10.14411/eje.2008.096 CrossRefGoogle Scholar
  55. Xie S, Hua B-Z (2010) Ultrastructure of the seminal vesicle and sperm storage in Panorpidae (Insecta: Mecoptera). Micron 41:760–768.  https://doi.org/10.1016/j.micron.2010.05.012 CrossRefGoogle Scholar
  56. Zhang B-B, Zhang C-N, Dietrich C, Dai W (2016) Anatomy and ultrastructure of male reproductive system in two leafhoppers Cicadella viridis and Kolla paulula (Hemiptera: Auchenorrhyncha: Cicadellidae). Ann Entomol Soc Am 109:447–462.  https://doi.org/10.1093/aesa/saw016 CrossRefGoogle Scholar
  57. Zhong W, Ding G, Hua B-Z (2015) The role of male’s anal horns in copulation of a scorpionfly. J Zool 295:170–177.  https://doi.org/10.1111/jzo.12194 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant ProtectionNorthwest A&F UniversityYanglingChina
  2. 2.College of ForestryHenan University of Science and TechnologyLuoyangChina

Personalised recommendations