Advertisement

Protoplasma

pp 1–17 | Cite as

Roles of potential plant hormones and transcription factors in controlling leaf senescence and drought tolerance

  • Sumira Jan
  • Nazia Abbas
  • Muhammad Ashraf
  • Parvaiz Ahmad
Review Article
  • 67 Downloads

Abstract

Plant leaves offer an exclusive windowpane to uncover the changes in organs, tissues, and cells as they advance towards the process of senescence and death. Drought-induced leaf senescence is an intricate process with remarkably coordinated phases of onset, progression, and completion implicated in an extensive reprogramming of gene expression. Advancing leaf senescence remobilizes nutrients to younger leaves thereby contributing to plant fitness. However, numerous mysteries remain unraveled concerning leaf senescence. We are not still able to correlate leaf senescence and drought stress to endogenous and exogenous environments. Furthermore, we need to decipher how molecular mechanisms of the leaf senescence and levels of drought tolerance are advanced and how is the involvement of SAGs in drought tolerance and plant fitness. This review provides the perspicacity indispensable for facilitating our coordinated point of view pertaining to leaf senescence together with inferences on progression of whole plant aging. The main segments discussed in the review include coordination between hormonal signaling, leaf senescence, drought tolerance, and crosstalk between hormones in leaf senescence regulation.

Keywords

Leaf senescence Drought tolerance Transcription factors Phytohormones 

Notes

Funding information

This work was supported by the Deanship of Scientific Research at King Saud University for funding this research group no. RG-1438-039.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abdelrahman M, El-Sayed M, Jogaiah S, Burritt DJ, Tran LSP (2017) The “STAY-GREEN” trait and phytohormone signaling networks in plants under heat stress. Plant Cell Rep 1–17Google Scholar
  2. Alvarez S, Marsh EL, Schroeder SG, Schachtman DP (2008) Metabolomic and proteomic changes in the xylem sap of maize under drought. Plant Cell Environ 31:325–340PubMedCrossRefGoogle Scholar
  3. Azooz MM, Ahmad P (2016) Plant-environment interaction: responses and approaches to mitigate stress. John Wiley & SonsGoogle Scholar
  4. Bai L, Wang P, Song CP (2014) Reactive Oxygen Species (ROS) and ABA Signalling. In: Abscisic Acid: Metabolism, Transport and Signaling. Springer, Netherlands, p 191–223Google Scholar
  5. Bajguz A, Hayat S (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47:1–8PubMedCrossRefGoogle Scholar
  6. Balazadeh S, Kwasniewski M, Caldana C, Mehrnia M, Zanor MI, Xue GP, Mueller-Roeber B (2011) ORS1, an H2O2-responsive NAC transcription factor, controls senescence in Arabidopsis thaliana. Mol Plant 4(2):346–360PubMedPubMedCentralCrossRefGoogle Scholar
  7. Balazadeh S, Wu A, Mueller-Roeber B (2010) Salt-triggered expression of the ANAC092-dependent senescence regulon in Arabidopsis thaliana. Plant Signal Behav 5(6):733–735PubMedPubMedCentralCrossRefGoogle Scholar
  8. Berens ML, Berry HM, Mine A, Argueso CT, Tsuda K (2017) Evolution of hormone signaling networks in plant defense. Ann Rev PhytopathGoogle Scholar
  9. Besseau S, Li J, Palva ET (2012) WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. J Exp Bot 63(7):2667–2679PubMedPubMedCentralCrossRefGoogle Scholar
  10. Blume YB, Krasylenko Y A, Yemets, A I (2017) The role of the plant cytoskeleton in phytohormone signaling under abiotic and biotic stresses. Mechanism of plant hormone signaling under stress, p 127–185Google Scholar
  11. Breeze E, Harrison E, McHattie S, Hughes L, Hickman R, Hill C, Zhang C (2011) High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 23(3):873–894PubMedPubMedCentralCrossRefGoogle Scholar
  12. Brenner WG, Ramireddy E Heyl A, Schmülling T (2012) Gene regulation by cytokinin in Arabidopsis. Fron Plant Sci 3:8Google Scholar
  13. Burgess P, Huang B (2016) Mechanisms of hormone regulation for drought tolerance in plants. In: Drought stress tolerance in plants, vol 1. Springer International Publishing, p 45–75Google Scholar
  14. Cha JY, Kim WY, Kang SB, Kim JI, Baek D, Jung IJ (2015) A novel thiol-reductase activity of Arabidopsis YUC6 confers drought tolerance independently of auxin biosynthesis. Nat Commun 6:8041PubMedPubMedCentralCrossRefGoogle Scholar
  15. Chen MK, Hsu WH, Lee PF, Thiruvengadam M, Chen HI, Yang CH (2011) The MADS box gene, FOREVER YOUNG FLOWER, acts as a repressor controlling floral organ senescence and abscission in Arabidopsis. Plant J 68(1):168–185PubMedCrossRefGoogle Scholar
  16. Chen J, Nolan T, Ye H, Zhang M, Tong H, Xin P, Yin Y (2017b) Arabidopsis WRKY46, WRKY54 and WRKY70 transcription factors are involved in brassinosteroid-regulated plant growth and drought response. Plant Cell 29(6):1425–1439PubMedPubMedCentralGoogle Scholar
  17. Chen H, Ruiz PD, McKimpson WM, Novikov L, Kitsis RN, Gamble MJ (2015a) MacroH2A1 and ATM play opposing roles in paracrine senescence and the senescence-associated secretory phenotype. Mol Cell 59(5):719–731PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chen QF, Xu L, Tan WJ, Chen L, Qi H, Xie LJ, Chen MX, Liu BY, Yu LJ, Yao N, Zhang JH (2015b) Disruption of the Arabidopsis defense regulator genes SAG101, EDS1, and PAD4 confers enhanced freezing tolerance. Mol Plant 8(10):1536–1549PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chen J, Zhu X, Ren J, Qiu K, Li Z, Xie Z, Kuai B (2017a) Suppressor of overexpression of CO 1 negatively regulates dark-induced leaf Degreening and senescence by directly repressing Pheophytinase and other senescence-associated genes in Arabidopsis. Plant Physiol, pp-01457 173:1881–1891PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cheng Y, Guan J (2014) Involvement of pheophytinase in ethylene-mediated chlorophyll degradation in the peel of harvested ‘Yali’pear. J Plant Growth Regul 33(2):364–372CrossRefGoogle Scholar
  21. Cheng CY, Kieber JJ (2015) Signaling: cytokinin signaling. Mol Biol 1–19Google Scholar
  22. Chini A, Gimenez-Ibanez S, Goossens A, Solano R (2016) Redundancy and specificity in jasmonate signalling. Curr Opin Plant Biol 33:147–156PubMedCrossRefGoogle Scholar
  23. Christiansen MW, Matthewman C, Podzimska-Sroka D, O’Shea C, Lindemose S, Møllegaard NE, Holme IB, Hebelstrup K, Skriver K, Gregersen PL (2016) Barley plants over-expressing the NAC transcription factor gene HvNAC005 show stunting and delay in development combined with early senescence. J Exp Bot 67(17):5259–5273PubMedPubMedCentralCrossRefGoogle Scholar
  24. Ciolkowski I, Wanke D, Birkenbihl RP, Somssich IE (2008) Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Mol Biol 68(1-2):81–92PubMedPubMedCentralCrossRefGoogle Scholar
  25. da Costa LC, Finger FL (2016) Flower opening and vase life of gladiolus cultivars: the sensitivity to ethylene and the carbohydrate content. Ornam Hortic 22(2):147–153CrossRefGoogle Scholar
  26. Dalman K, Wind JJ, Nemesio-Gorriz M, Hammerbacher A, Lundén K, Ezcurra I, Elfstrand M (2017) Overexpression of PaNAC03, a stress induced NAC gene family transcription factor in Norway spruce leads to reduced flavonol biosynthesis and aberrant embryo development. BMC Plant Biol 17(1):6PubMedPubMedCentralCrossRefGoogle Scholar
  27. Dani KGS, Fineschi S, Michelozzi M, Loreto F (2016) Do cytokinins, volatile isoprenoids and carotenoids synergically delay leaf senescence? Plant Cell EnvironGoogle Scholar
  28. Dani KGS, Jamie IM, Prentice IC, Atwell BJ (2014) Evolution of isoprene emission capacity in plants. Trends Plant Sci 19:439–446PubMedCrossRefGoogle Scholar
  29. Danisman S, Van der Wal F, Dhondt S, Waites R, de Folter S, Bimbo A, Angenent GC (2012) Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically. Plant Physiol 159(4):1511–1523PubMedPubMedCentralCrossRefGoogle Scholar
  30. Delatorre CA, Cohen Y, Liu L, Peleg Z, Blumwald E (2012) The regulation of the SARK promoter activity by hormones and environmental signals. Plant Sci 193:39–47PubMedCrossRefGoogle Scholar
  31. Deng L, Qin P, Liu Z, Wang G, Chen W, Tong J, He H (2017) Characterization and fine-mapping of a novel premature leaf senescence mutant yellow leaf and dwarf 1 in rice. Plant Physiol Biochem 111:50–58PubMedCrossRefGoogle Scholar
  32. Distelfeld A, Avni R, Fischer AM (2014) Senescence, nutrient remobilization, and yield in wheat and barley. J Exp Bot 65(14):3783–3798PubMedCrossRefGoogle Scholar
  33. Dubois M, Skirycz A, Claeys H, Maleux K, Dhondt S, De Bodt S, Inzé D (2013) ETHYLENE RESPONSE FACTOR6 acts as a central regulator of leaf growth under water-limiting conditions in Arabidopsis. Plant Physiol 162(1):319–332PubMedPubMedCentralCrossRefGoogle Scholar
  34. Dubois M, Van den Broeck L, Claeys H, Van Vlierberghe K, Matsui M, Inzé D (2015) The ETHYLENE RESPONSE FACTORs ERF6 and ERF11 antagonistically regulate mannitol-induced growth inhibition in Arabidopsis. Plant Physiol, pp-00335Google Scholar
  35. Edlund E, Novak O, Karady M, Ljung K, Jansson S (2017) Contrasting patterns of cytokinins between years in senescing aspen leaves. Plant Cell Environ 40(5):622–634PubMedCrossRefGoogle Scholar
  36. Fan ZQ, Tan XL, Shan W, Kuang JF, Lu WJ, Chen JY (2017) BrWRKY65, a WRKY transcription factor, is involved in regulating three leaf senescence-associated genes in Chinese flowering cabbage. Int J Mol Sci 18(6):1228PubMedCentralCrossRefPubMedGoogle Scholar
  37. Fedina E, Yarin A, Mukhitova F, Blufard A, Chechetkin I (2017) Brassinosteroid-induced changes of lipid composition in leaves of Pisum sativum L. during senescence. Steroids 117:25–28PubMedCrossRefGoogle Scholar
  38. Feng G, Xu Q, Wang Z, Zhuoma Q (2016) AINTEGUMENTA negatively regulates age-dependent leaf senescence downstream of AUXIN RESPONSE FACTOR 2 in Arabidopsis thaliana. Plant Biotechnol 33(2):71–76CrossRefGoogle Scholar
  39. Fischer AM (2012) The complex regulation of senescence. Crit Rev Plant Sci 31(2):124–147CrossRefGoogle Scholar
  40. Gan SS, Hörtensteiner S (2013) Frontiers in plant senescence research: from bench to bank. Plant Mol Biol 82:503–504PubMedCrossRefGoogle Scholar
  41. Garapati P, Xue GP, Munné-Bosch S, Balazadeh S (2015) Transcription factor ATAF1 in Arabidopsis promotes senescence by direct regulation of key chloroplast maintenance and senescence transcriptional cascades. Plant Physiol 168(3):1122–1139PubMedPubMedCentralCrossRefGoogle Scholar
  42. Guo Y, Gan S (2006) AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J 46(4):601–612PubMedCrossRefGoogle Scholar
  43. Guo P, Li Z, Huang P, Li B, Fang S, Chu J, Guo H (2017) A tripartite amplification loop involving the transcription factor WRKY75, salicylic acid, and reactive oxygen species accelerates leaf senescence. Plant Cell, tpc-00438Google Scholar
  44. Goossens J, Fernández-Calvo P, Schweizer F, Goossens A (2016) Jasmonates: signal transduction components and their roles in environmental stress responses. Plant Mol Biol 91:673–689PubMedCrossRefGoogle Scholar
  45. Have M, Marmagne A, Chardon F, Masclaux-Daubresse C (2016) Nitrogen remobilisation during leaf senescence: lessons from Arabidopsis to crops. J Exper Bot 68(10):2513–2529Google Scholar
  46. He Y, Gans S (2002) A gene encoding an acyl hydrolase is involved in leaf senescence in Arabidopsis. Plant Cell 14:805–815PubMedPubMedCentralCrossRefGoogle Scholar
  47. He K, Gou X, Yuan T, Lin H, Asami T, Yoshida S, Russell SD, Li J (2007) BAK1 and BKK1 regulate brassinosteroid-dependent growth and brassinosteroid-independent cell-death pathways. Curr Biol 17:1109–1115PubMedCrossRefGoogle Scholar
  48. He GH, Xu JY, Wang YX, Liu JM, Li PS, Chen M (2016) Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. BMC Plant Biol 16:116PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hickman R, Hill C, Penfold CA, Breeze E, Bowden L, Moore JD, Zhang P, Jackson A, Cooke E, Bewicke-Copley F, Mead A (2013) A local regulatory network around three NAC transcription factors in stress responses and senescence in Arabidopsis leaves. Plant J 75(1):26–39PubMedPubMedCentralCrossRefGoogle Scholar
  50. Hoeberichts FA, Woltering EJ (2002) Multiple mediators of plant programmed cell death: interplay of conserved cell death mechanisms and plant-specific regulators. BioEss 25:47–57CrossRefGoogle Scholar
  51. Holland V, Koller S, Lukas S, Brüggemann W (2015) Drought-and frost-induced accumulation of soluble carbohydrates during accelerated senescence in Quercus pubescens. Trees 1–12Google Scholar
  52. Hu Y, Jiang Y, Han X, Wang H, Pan J, Yu D (2017) Jasmonate regulates leaf senescence and tolerance to cold stress: crosstalk with other phytohormones. J Exp Bot 68(6):1361–1369PubMedCrossRefGoogle Scholar
  53. Huang H, Wang Y, Wang S, Wu X, Yang K, Niu Y, Dai S (2012) Transcriptome-wide survey and expression analysis of stress-responsive NAC genes in Chrysanthemum lavandulifolium. Plant Sci 193:18–27PubMedCrossRefGoogle Scholar
  54. Husar S, Berthiller F, Fujioka S, Rozhon W, Khan M, Kalaivanan F, Elias L, Higgins GS, Li Y, Schuhmacher R, Krska R, Seto H, Vaistij FE, Bowles D, Poppenberger B (2011) Overexpression of the UGT73C6 alters brassinosteroid glucoside formation in Arabidopsis thaliana. BMC Plant Biol 11:51PubMedPubMedCentralCrossRefGoogle Scholar
  55. Huysmans M, Lema S, Coll NS, Nowack MK (2017) Dying two deaths—programmed cell death regulation in development and disease. Curr Opin Plant Biol 35:37–44PubMedCrossRefGoogle Scholar
  56. Jajic I, Sarna T, Strzalka K (2015) Senescence, stress, and reactive oxygen species. Plan 4(3):393–411CrossRefGoogle Scholar
  57. Jensen MK, Lindemose S, De Masi F, Reimer JJ, Nielsen M, Perera V et al (2013) ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana. FEBS Open Bio 3(1):321–327PubMedPubMedCentralCrossRefGoogle Scholar
  58. Jensen MK, Skriver K (2014) NAC transcription factor gene regulatory and protein–protein interaction networks in plant stress responses and senescence. IUBMB Life 66(3):156–166PubMedPubMedCentralCrossRefGoogle Scholar
  59. Ji Y, Liu J, Xing D (2016) Low concentrations of salicylic acid delay methyl jasmonate-induced leaf senescence by up-regulating nitric oxide synthase activity. J Exper Bot 67(17):5233–5245CrossRefGoogle Scholar
  60. Jing HC, Schippers JH, Hille J, Dijkwel PP (2005) Ethylene-induced leaf senescence depends on age-related changes and OLD genes in Arabidopsis. J Exp Bot 56(421):2915–2923PubMedCrossRefGoogle Scholar
  61. Jiang Y, Liang G, Yang S, Yu D (2014) Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid–and auxin-mediated signaling in jasmonic acid–induced leaf senescence. Plant Cell 26(1):230–245PubMedPubMedCentralCrossRefGoogle Scholar
  62. Jiang G, Yan H, Wu F, Zhang D, Zeng W, Qu H, Chen F, Tan L, Duan X, Jiang Y (2017) Litchi fruit LcNAC1 is a target of LcMYC2 and regulator of fruit senescence through its interaction with LcWRKY1. Plant Cell Physiol 58(6):1075–1089PubMedCrossRefGoogle Scholar
  63. Jibran R, Hunter DA, Dijkwel PP (2013) Hormonal regulation of leaf senescence through integration of developmental and stress signals. Plant Mol Biol 82(6):547–561PubMedCrossRefGoogle Scholar
  64. Kant S, Bi YM, Zhu T, Rothstein SJ (2009) SAUR39, a small auxinup RNA gene, acts as a negative regulator of auxin synthesis and transport in rice. Plant Physiol 151:691–701PubMedPubMedCentralCrossRefGoogle Scholar
  65. Kieber JJ, Schaller GE (2014) Cytokinins. Arabidopsis Book 12:e0168PubMedPubMedCentralCrossRefGoogle Scholar
  66. Kim HJ, Hong SH, Kim YW, Lee IH, Jun JH, Phee BK, Rupak T, Jeong H, Lee Y, Hong BS, Nam HG (2014) Gene regulatory cascade of senescence-associated NAC transcription factors activated by ETHYLENE-INSENSITIVE2-mediated leaf senescence signaling in Arabidopsis. J Exp Bot 65(14):4023–4036PubMedPubMedCentralCrossRefGoogle Scholar
  67. Kim H, Kim Y, Yeom M, Lim J, Nam HG (2016a) Age-associated circadian period changes in Arabidopsis leaves. J Exp Bot 67(9):2665–2673PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kim HJ, Nam HG, Lim PO (2016b) Regulatory network of NAC transcription factors in leaf senescence. Curr Opin Plant Biol 33:48–56PubMedCrossRefGoogle Scholar
  69. Kim YS, Sakuraba Y, Han SH, Yoo SC, Paek NC (2013) Mutation of the Arabidopsis NAC016 transcription factor delays leaf senescence. Plant Cell Physiol 54(10):1660–1672PubMedCrossRefGoogle Scholar
  70. Kim J, Chang C, Tucker ML (2015) To grow old: regulatory role of ethylene and jasmonic acid in senescence. Front Plant Sci 6Google Scholar
  71. Kim JH, Chung KM, Woo HR (2011) Three positive regulators of leaf senescence in Arabidopsis, ORE1, ORE3 and ORE9, play roles in crosstalk among multiple hormone-mediated senescence pathways. Genes Genomics 33:373–381CrossRefGoogle Scholar
  72. Kim JH, Woo HR, Kim J, Lim PO, Lee IC, Choi SH, Hwang D, Nam HG (2009) Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science 323:1053–1057PubMedCrossRefGoogle Scholar
  73. Kou X, Watkins CB, Gan SS (2012) Arabidopsis AtNAP regulates fruit senescence. J Exp Bot 63(17):6139–6147PubMedPubMedCentralCrossRefGoogle Scholar
  74. Krishna P, Prasad BD, Rahman T (2017) Brassinosteroid action in plant abiotic stress tolerance. Brassinosteroids: Meth Prot, p 193–202Google Scholar
  75. Kumar MN, Verslues PE (2015) Stress physiology functions of the Arabidopsis histidine kinase cytokinin receptors. Physiol Plant 154(3):369–380PubMedCrossRefGoogle Scholar
  76. Kumar D, Haq I, Chapagai D, Tripathi D, Donald D, Hossain M, Devaiah S (2015) Hormone signaling: current perspectives on the roles of salicylic acid and its derivatives in plants. In: The formation, structure and activity of phytochemicals. Springer International Publishing, p 115–136Google Scholar
  77. Kuppu S, Mishra N, Hu R, Sun L, Zhu X, Shen G et al (2013) Water-deficit inducible expression of a cytokinin biosynthetic gene IPT improves drought tolerance in cotton. PLoS One 8(5):e64190PubMedPubMedCentralCrossRefGoogle Scholar
  78. Lee IC, Hong SW, Whang SS, Lim PO, Nam HG, Koo JC (2011) Age-dependent action of an ABAinducible receptor kinase, RPK1, as a positive regulator of senescence in Arabidopsis leaves. Plant Cell Physiol 52:651–662PubMedCrossRefGoogle Scholar
  79. Lee SC, Luan S (2012) ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant Cell Environ 35:53–60CrossRefGoogle Scholar
  80. Lee S, Seo PJ, Lee HJ, Park CM (2012) A NAC transcription factor NTL4 promotes reactive oxygen species production during drought-induced leaf senescence in Arabidopsis. Plant J 70(5):831–844PubMedCrossRefGoogle Scholar
  81. Li Y, Chang Y, Zhao C, Yang H, Ren D (2016) Expression of the inactive ZmMEK1 induces salicylic acid accumulation and salicylic acid-dependent leaf senescence. J Integr Plant Biol 6(134):32–42Google Scholar
  82. Li Z, Wang J, Zhang X, Lei M, Fu Y, Zhang J et al (2016) Transcriptome sequencing determined flowering pathway genes in Aechmea fasciata treated with ethylene. J Plant Growth Regul 35(2):316–329CrossRefGoogle Scholar
  83. Li Z, Peng J, Wen X, Guo H (2013) ETHYLENE-INSENSITIVE3 is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. Plant Cell 25:3311–3328PubMedPubMedCentralCrossRefGoogle Scholar
  84. Li QF, Wang C, Jiang L, Li S, Sun SS, He JX (2012) An interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in Arabidopsis. Sci Signal 5(244):72–72CrossRefGoogle Scholar
  85. Liebsch D, Keech O (2016) Dark-induced leaf senescence: new insights into a complex light-dependent regulatory pathway. New Phytol 212(3):563–570PubMedCrossRefGoogle Scholar
  86. Lim PO, Kim HJ, Gil Nam H (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136CrossRefGoogle Scholar
  87. Lim PO, Lee IC, Kim J, Kim HJ, Ryu JS, Woo HR, Nam HG (2010) Auxin response factor 2 (ARF2) plays a major role in regulating auxin-mediated leaf longevity. J Exp Bot 61:1419–1430PubMedPubMedCentralCrossRefGoogle Scholar
  88. Lindemose S, Jensen MK, de Velde JV, O'shea C, Heyndrickx KS, Workman CT, Masi FD (2014) A DNA-binding-site landscape and regulatory network analysis for NAC transcription factors in Arabidopsis thaliana. Nucleic Acids Res 42(12):7681–7693PubMedPubMedCentralCrossRefGoogle Scholar
  89. Liu T, Longhurst AD, Talavera-Rauh F, Hokin SA, Barton MK (2016) The Arabidopsis transcription factor ABIG1 relays ABA signaled growth inhibition and drought induced senescence. eLife 5:e13768Google Scholar
  90. Lu G, Casaretto JA, Ying S, Mahmood K, Liu F, Bi YM, Rothstein SJ (2017) Overexpression of OsGATA12 regulates chlorophyll content, delays plant senescence and improves rice yield under high density planting. Plant Mol Biol 94(1–2):215–227PubMedCrossRefGoogle Scholar
  91. Lu H, Greenberg JT, Holuigue L (2016) Salicylic acid signaling networks. Fron Plant Sci 7Google Scholar
  92. MacMillan CP, Birke H, Chuah A, Brill E, Tsuji Y, Ralph J, Pettolino FA (2017) Tissue and cell-specific transcriptomes in cotton reveal the subtleties of gene regulation underlying the diversity of plant secondary cell walls. BMC Genet 18(1):539CrossRefGoogle Scholar
  93. Maillard A, Diquélou S, Billard V, Laîné P, Garnica M, Prudent M, Ourry A (2015) Leaf mineral nutrient remobilization during leaf senescence and modulation by nutrient deficiency. Front Plant Sci 6Google Scholar
  94. Mao C, Lu S, Lv B, Zhang B, Shen J, He J, Luo L, Xi D, Chen X, Ming F (2017) A rice NAC transcription factor promotes leaf senescence via ABA biosynthesis. Plant Physiol 174(3):1747–1763PubMedPubMedCentralCrossRefGoogle Scholar
  95. Matallana-Ramirez LP, Rauf M, Farage-Barhom S, Dortay H, Xue GP, Dröge-Laser W, Mueller-Roeber B (2013) NAC transcription factor ORE1 and senescence-induced BIFUNCTIONAL NUCLEASE1 (BFN1) constitute a regulatory cascade in Arabidopsis. Mol Plant 6(5):1438–1452PubMedCrossRefGoogle Scholar
  96. Merewitz E, Xu Y, Huang B (2016) Differentially expressed genes associated with improved drought tolerance in creeping Bentgrass overexpressing a gene for cytokinin biosynthesis. PLoS One 11(11):e0166676PubMedPubMedCentralCrossRefGoogle Scholar
  97. Miao Y, Laun T, Zimmermann P, Zentgraf U (2004) Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol 55(6):853–867CrossRefGoogle Scholar
  98. Miao Y, Zentgraf U (2007) The antagonist function of Arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the jasmonic and salicylic acid equilibrium. Plant Cell 19(3):819–830PubMedPubMedCentralCrossRefGoogle Scholar
  99. Mueller-Roeber B, Balazadeh S (2014) Auxin and its role in plant senescence. J Plant Growth Regul 33(1):21–33CrossRefGoogle Scholar
  100. Müller M, Munné-Bosch S (2015) Ethylene response factors: a key regulatory hub in hormone and stress signaling. Plant Physiol 169(1):32–41PubMedPubMedCentralCrossRefGoogle Scholar
  101. Munné-Bosch S, Alegre L (2004) Die and let live: leaf senescence contributes to plant survival under drought stress. Funct Plant Biol 31(3):203–216CrossRefGoogle Scholar
  102. Narsai R, Law SR, Carrie C, Xu L, Whelan J (2011) In-depth temporal transcriptome profiling reveals a crucial developmental switch with roles for RNA processing and organelle metabolism that are essential for germination in Arabidopsis. Plant Physiol 157(3):1342–1362PubMedPubMedCentralCrossRefGoogle Scholar
  103. Nawaz F, Naeem M, Zulfiqar B, Akram A, Ashraf MY, Raheel M et al (2017) Understanding brassinosteroid-regulated mechanisms to improve stress tolerance in plants: a critical review. Environ Sci Pollut Res 24(19):15959–15975PubMedCrossRefGoogle Scholar
  104. Nie H, Zhao C, Wu G, Wu Y, Chen Y, Tang D (2012) SR1, a calmodulin-binding transcription factor, modulates plant defense and ethylene-induced senescence by directly regulating NDR1 and EIN3. Plant Physiol 158(4):1847–1859PubMedPubMedCentralCrossRefGoogle Scholar
  105. Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signalling in plants. New Phytol 159:11–35CrossRefGoogle Scholar
  106. Nisar N, Li L, Lu S, Khin NC, Pogson BJ (2015) Carotenoid metabolism in plants. Mol Plant 8(1):68–82CrossRefGoogle Scholar
  107. Nishiyama R, Watanabe Y, Fujita Y, Le DT, Kojima M, Werner T, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Kakimoto T, Sakakibara H, Schmülling T, Tran LS (2011) Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 23:2169–2183PubMedPubMedCentralCrossRefGoogle Scholar
  108. Noctor G, Foyer CH (2016) Intracellular redox compartmentation and ROS-related communication in regulation and signaling. Plant Physiol 171(3):1581–1592PubMedPubMedCentralCrossRefGoogle Scholar
  109. Nolan TM, Brennan B, Yang M, Chen J, Zhang M, Li Z, Yin Y (2017) Selective autophagy of BES1 mediated by DSK2 balances plant growth and survival. Dev Cell 41(1):33–46PubMedPubMedCentralCrossRefGoogle Scholar
  110. Pandey GK (ed) (2017) Mechanism of Plant Hormone Signaling Under Stress, 2 Volume Set (Vol. 1). John Wiley & SonsGoogle Scholar
  111. Pandey N, Iqbal Z, Pandey BK, Sawant SV (2017) Phytohormones and drought stress: plant responses to transcriptional regulation. Mechanism of Plant Hormone Signaling under Stress, p 477–504Google Scholar
  112. Paparozzi ET, Chahal JK, Dobrev P, Claassen EA, Stroup WW, Vankova R (2016) Cytokinin dynamics during the response to nitrogen in two contrasting plectranthus genotypes. J Am Soc Hortic Sci 141(3):264–274Google Scholar
  113. Pei H, Ma N, Tian J, Luo J, Chen J, Li J, Zheng Y, Chen X, Fei Z, Gao J (2013) An NAC transcription factor controls ethylene-regulated cell expansion in flower petals. Plant Physiol 163(2):775–791PubMedPubMedCentralCrossRefGoogle Scholar
  114. Pimenta MR, Silva PA, Mendes GC, Alves JR, Caetano HDN, Machado JPB, Rosado GL (2016) The stress-induced soybean NAC transcription factor GmNAC81 plays a positive role in developmentally programmed leaf senescence. Plant Cell Physiol 57(5):1098–1114PubMedCrossRefGoogle Scholar
  115. Podzimska-Sroka D, O'Shea C, Gregersen PL, Skriver K (2015) NAC transcription factors in senescence: from molecular structure to function in crops. Plants 4(3):412–448PubMedPubMedCentralCrossRefGoogle Scholar
  116. Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Tren Plant Sci 17(6):369–381CrossRefGoogle Scholar
  117. Qi T, Huang H, Song S, Xie D (2015) Regulation of jasmonate-mediated stamen development and seed production by a bHLH-MYB complex in Arabidopsis. Plant Cell 27:1620–1633PubMedPubMedCentralCrossRefGoogle Scholar
  118. Qin Y, Tian Y, Liu X (2015) A wheat salinity-induced WRKY transcription factor TaWRKY93 confers multiple abiotic stress tolerance in Arabidopsis thaliana. Biochem Biophys Res Commun 464:428–433PubMedCrossRefGoogle Scholar
  119. Raines T, Shanks C, Cheng CY, McPherson D, Argueso CT, Kim HJ, Schaller GE (2016) The cytokinin response factors modulate root and shoot growth and promote leaf senescence in Arabidopsis. Plant J 85(1):134–147PubMedCrossRefGoogle Scholar
  120. Ramaswamy M, Narayanan J, Manickavachagam G, Athiappan S, Arun M, Gomathi R, Ram B (2017) Genome wide analysis of NAC gene family ‘sequences’ in sugarcane and its comparative phylogenetic relationship with rice, sorghum, maize and Arabidopsis for prediction of stress associated NAC genes. Agri Gene 3:1–11CrossRefGoogle Scholar
  121. Ramel F, Ksas B, Havaux M (2013) Jasmonate: a decision maker between cell death and acclimation in the response of plants to singlet oxygen. Plant Signal Behav 8(12):e26655PubMedPubMedCentralCrossRefGoogle Scholar
  122. Rauf M, Arif M, Dortay H, Matallana-Ramírez LP, Waters MT, Nam HG, Lim PO, Mueller-Roeber B, Balazadeh S (2013) ORE1 balances leaf senescence against maintenance by antagonizing G2-like-mediated transcription. EMBO Rep 14(4):382–388PubMedPubMedCentralCrossRefGoogle Scholar
  123. Reguera M, Peleg Z, Abdel-Tawab YM, Tumimbang EB, Delatorre CA, Blumwald E (2013) Stress-induced cytokinin synthesis increases drought tolerance through the coordinated regulation of carbon and nitrogen assimilation in rice. Plant Physiol 163(4):1609–1622PubMedPubMedCentralCrossRefGoogle Scholar
  124. Reinbothe C, Springer A, Samol I, Reinbothe S (2009) Plant oxylipins: role of jasmonic acid during programmed cell death, defence and leaf senescence. FEBS J 276(17):4666–4681PubMedCrossRefGoogle Scholar
  125. Reinbothe S, Reinbothe C, Heintzen C, Seidenbecher C, Parthier B (1993a) A methyl jasmonate-induced shift in the length of the 5′ untranslated region impairs translation of the plastid rbcL transcript in barley. EMBO J 12(4):1505–1512PubMedPubMedCentralCrossRefGoogle Scholar
  126. Reinbothe S, Reinbothe C, Parthier B (1993b) Methyl jasmonate represses translation initiation of a specific set of mRNAs in barley. Plant J 4(3):459–467CrossRefGoogle Scholar
  127. Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci 104(49):19631–19636PubMedCrossRefGoogle Scholar
  128. Robert-Seilaniantz A, Grant M, Jones JD (2011) Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol 49:317–343PubMedPubMedCentralCrossRefGoogle Scholar
  129. Sağlam-Çağ S (2007) The effect of epibrassinolide on senescence in wheat leaves. Biotechnol Biotechnol Equip 21(1):63–65CrossRefGoogle Scholar
  130. Saini S, Sharma I, Pati PK (2015) Versatile roles of brassinosteroid in plants in the context of its homoeostasis, signaling and crosstalks. Front Plant Sci 6Google Scholar
  131. Sami F, Yusuf M, Faizan M, Faraz A, Hayat S (2016) Role of sugars under abiotic stress. Plant Physiol Biochem 109:54–61CrossRefGoogle Scholar
  132. Sarwat M 2017 Leaf senescence in plants: nutrient remobilization and gene regulation. In: stress signaling in plants: genomics and proteomics perspective, volume 2. Springer International Publishing, p 301-316Google Scholar
  133. Sarwat M, Naqvi AR, Ahmad P, Ashraf M, Akram NA (2013) Phytohormones and microRNAs as sensors and regulators of leaf senescence: assigning macro roles to small molecules. Biotechnol Adv 31(8):1153–1171PubMedCrossRefGoogle Scholar
  134. Scarpeci TE, Zanor MI, Mueller-Roeber B, Valle EM (2013) Overexpression of AtWRKY30 enhances abiotic stress tolerance during early growth stages in Arabidopsis thaliana. Plant Mol Biol 83(3):265–277PubMedCrossRefGoogle Scholar
  135. Schommer C, Palatnik JF, Aggarwal P, Chételat A, Cubas P, Farmer EE et al (2008) Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol 6(9):e230PubMedPubMedCentralCrossRefGoogle Scholar
  136. Seo PJ, Park JM, Kang SK, Kim SG, Park CM (2011) An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity. Planta 233(1):189–200PubMedCrossRefGoogle Scholar
  137. Shahnejat-Bushehri S, Allu AD, Mehterov N, Thirumalaikumar VP, Alseekh S, Fernie AR, Balazadeh S (2017) Arabidopsis NAC transcription factor JUNGBRUNNEN1 exerts conserved control over gibberellin and brassinosteroid metabolism and signaling genes in tomato. Front Plant Sci 8:214PubMedPubMedCentralCrossRefGoogle Scholar
  138. Shahnejat-Bushehri S, Tarkowska D, Sakuraba Y, Balazadeh S (2016) Arabidopsis NAC transcription factor JUB1 regulates GA/BR metabolism and signalling. Nat Plants 2:16013PubMedCrossRefGoogle Scholar
  139. Sharabi-Schwager M, Lers A, Samach A, Guy CL, Porat R (2010) Overexpression of the CBF2 transcriptional activator in Arabidopsis delays leaf senescence and extends plant longevity. J Exp Bot 61:261–273PubMedCrossRefGoogle Scholar
  140. Skirycz A, Claeys H, De Bodt S, Oikawa A, Shinoda S, Andriankaja M, Maleux K, Eloy NB, Coppens F, Yoo SD, Saito K, Inze D (2011) Pause-and-stop: the effects of osmotic stress on cell proliferation during early leaf development in Arabidopsis and a role for ethylene signaling in cell cycle arrest. Plant Cell 23:1876–1888PubMedPubMedCentralCrossRefGoogle Scholar
  141. Sklensky DE, Davies PJ (2011) Resource partitioning to male and female flowers of Spinacia oleracea L. in relation to whole-plant monocarpic senescence. J Exp Bot 62(12):4323–4336PubMedPubMedCentralCrossRefGoogle Scholar
  142. Song Y, Xiang F, Zhang G, Miao Y, Miao C, Song CP (2016) Abscisic acid as an internal integrator of multiple physiological processes modulates leaf senescence onset in Arabidopsis thaliana. Front Plant Sci 7:181PubMedPubMedCentralGoogle Scholar
  143. Song Y, Yang C, Gao S, Zhang W, Li L, Kuai B (2014) Age-triggered and dark-induced leaf senescence require the bHLH transcription factors PIF3, 4, and 5. Mol Plant 7(12):1776–1787PubMedPubMedCentralCrossRefGoogle Scholar
  144. Stamm P, Kumar PP (2013) Auxin and gibberellin responsive Arabidopsis SMALL AUXIN UP RNA36 regulates hypocotyl elongation in the light. Plant Cell Rep 32(6):759–769PubMedCrossRefGoogle Scholar
  145. Su Y, Hu S, Zhang B, Ye W, Niu Y, Guo L, Qian Q (2017) Characterization and fine mapping of a new early leaf senescence mutant es3 (t) in rice. Plant Growth Regul 81(3):419–431CrossRefGoogle Scholar
  146. Thirumalaikumar VP, Devkar V, Mehterov N, Ali S, Ozgur R, Turkan I, Balazadeh S 2017 NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato. Plant Biotechnol JGoogle Scholar
  147. Thomas H (2013) Senescence, ageing and death of the whole plant. New Phytol 197(3):696–711PubMedCrossRefGoogle Scholar
  148. Thomas H, Ougham H (2014) The stay-green trait. J Exp Bot 65(14):3889–3900CrossRefGoogle Scholar
  149. Thu NBA, Hoang XLT, Truc MT, Sulieman S, Thao NP, Tran LSP (2017) Cytokinin signaling in plant response to abiotic stresses. Mechanism of Plant Hormone Signaling under Stress, 71–100Google Scholar
  150. Uji Y, Akimitsu K, Gomi K (2017) Identification of OsMYC2-regulated senescence-associated genes in rice. Planta 245(6):1241–1246PubMedCrossRefGoogle Scholar
  151. van der Graaff E, Schwacke R, Schneider A, Desimone M, Flugge UI, Kunze R (2006) Transcription analysis of arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol 141:776–792Google Scholar
  152. Velasco-Arroyo, B., Diaz-Mendoza, M., Santamaria, M. E., Gonzalez-Melendi, P., Gomez-Sanchez, A., Arnaiz, A., Diaz, I., 2017. Senescence-associated genes in response to abiotic/biotic stresses. p 1–21Google Scholar
  153. Wang F, Liu J, Chen M, Zhou L, Li Z, Zhao Q, Cheng F (2016) Involvement of abscisic acid in PSII photodamage and D1 protein turnover for light-induced premature senescence of rice flag leaves. PLoS One 11(8):e0161203PubMedPubMedCentralCrossRefGoogle Scholar
  154. Wehner G, Balko C, Humbeck K, Zyprian E, Ordon F (2016) Expression profiling of genes involved in drought stress and leaf senescence in juvenile barley. BMC Plant Biol 16(1):3PubMedPubMedCentralCrossRefGoogle Scholar
  155. Woo HR, Kim JH, Kim J, Kim J, Lee U, Song IJ, Lim PO (2010) The RAV1 transcription factor positively regulates leaf senescence in Arabidopsis. J Exp Bot 61(14):3947–3957PubMedPubMedCentralCrossRefGoogle Scholar
  156. Woo HR, Kim HJ, Nam HG, Lim PO (2013) Plant leaf senescence and death–regulation by multiple layers of control and implications for aging in general. J Cell Sci 126(21):4823–4833PubMedCrossRefGoogle Scholar
  157. Woolhouse HW, Batt T (2016) The nature and regulation of senescence in plastids. Perspec Exp Biol 2:163–175Google Scholar
  158. Woo HR, Koo HJ, Kim J, Jeong H, Yang JO, Lee IH et al (2016) Programming of plant leaf senescence with temporal and inter-organellar coordination of transcriptome in Arabidopsis. Plant Physiol 171:452–467.  https://doi.org/10.1104/pp.15.01929 PubMedPubMedCentralCrossRefGoogle Scholar
  159. Wu A, Allu AD, Garapati P, Siddiqui H, Dortay H, Zanor MI, Asensi-Fabado MA, Munné-Bosch S, Antonio C, Tohge T, Fernie AR (2012b) JUNGBRUNNEN1, a reactive oxygen species–responsive NAC transcription factor, regulates longevity in Arabidopsis. Plant Cell 24(2):482–506PubMedPubMedCentralCrossRefGoogle Scholar
  160. Wu XY, Kuai BK, Jia JZ, Jing HC (2012a) Regulation of leaf senescence and crop genetic improvement. J Int Plant Biol 54(12):936–952CrossRefGoogle Scholar
  161. Xiao S, Gao W, Chen QF, Chan SW, Zheng SX, Ma J, Wang M, Welti R, Chye ML (2010) Overexpression of Arabidopsis AcylCoA binding protein ACBP3 promotes starvation-induced and agedependent leaf senescence. Plant Cell 22:1463–1482CrossRefGoogle Scholar
  162. Xiao S, Chye ML (2011) Overexpression of Arabidopsis Acyl-CoA-Binding Protein 3 Enhances NPR1-Dependent Plant Resistance to Pseudomonas syringe pv. tomato DC3000. Plant Physiol, pp-111Google Scholar
  163. Xiao XO, Zeng YM, Cao BH, Lei JJ, Chen QH, Meng CM, Cheng YJ (2017) PSAG12-IPT overexpression in eggplant delays leaf senescence and induces abiotic stress tolerance. The J Horticul Sci. Biotech 92(4):349–357Google Scholar
  164. Xie Y, Huhn K, Brandt R, Potschin M, Bieker S, Straub D, Wenkel S (2014) REVOLUTA and WRKY53 connect early and late leaf development in Arabidopsis. Development, dev-117689Google Scholar
  165. Xu ZS, Chen M, Li LC, Ma YZ (2011) Functions and application of the AP2/ERF transcription factor family in crop improvementF. J Int Plant Biol 53(7):570–585CrossRefGoogle Scholar
  166. Yang JC, Zhang JH, Wang ZQ, Zhu QS, Liu LJ (2003) Involvement of abscisic acid and cytokinins in the senescence and remobilization of carbon reserves in wheat subjected to water stress during grain filling. Plant Cell Environ 26(10):1621–1631CrossRefGoogle Scholar
  167. Yang SD, Seo PJ, Yoon HK, Park CM (2011) The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes. Plant Cell 23(6):2155–2168PubMedPubMedCentralCrossRefGoogle Scholar
  168. Yang X, Wang X, Ji L, Yi Z, Fu C, Ran J et al (2015) Overexpression of a Miscanthus lutarioriparius NAC gene MlNAC5 confers enhanced drought and cold tolerance in Arabidopsis. Plant Cell Rep 34(6):943–958PubMedCrossRefGoogle Scholar
  169. Ye H, Liu S, Tang B, Chen J, Xie Z, Nolan TM, Wang Y (2017) RD26 mediates crosstalk between drought and brassinosteroid signalling pathways. Nat Commun 8:14573PubMedPubMedCentralCrossRefGoogle Scholar
  170. Yoshimoto K, Jikumaru Y, Kamiya Y, Kusano M, Consonni C, Panstruga R, Ohsumi Y, Shirasu K (2009) Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell 21:2914–2927CrossRefGoogle Scholar
  171. Yu SM, Lo SF, Ho THD (2015) Source–sink communication: regulated by hormone, nutrient, and stress cross-signaling. Trends Plant Sci 20(12):844–857CrossRefGoogle Scholar
  172. Yu K, Wei J, Ma Q, Yu D, Li J (2009) Senescence of aerial parts is impeded by exogenous gibberellic acid in herbaceous perennial Paris polyphylla. J Plant Physiol 166(8):819–830PubMedCrossRefGoogle Scholar
  173. Yu J, Zhang Y, Di C (2016) JAZ7 negatively regulates dark-induced leaf senescence in Arabidopsis. J Exp Bot 67:751–762PubMedCrossRefGoogle Scholar
  174. Zentgraf U (2007) Oxidative stress and leaf senescence. In: Gan S (ed) Annual plant reviews: senescence processes in plants. Blackwell Publishing Ltd, Oxford, UK, p 26Google Scholar
  175. Zhang K, Gan SS (2012) An abscisic acid-AtNAP transcription factor-SAG113 protein phosphatase 2C regulatory chain for controlling dehydration in senescing Arabidopsis leaves. Plant Physiol 158(2):961–969PubMedCrossRefGoogle Scholar
  176. Zhang X, Ju HW, Chung MS, Huang P, Ahn SJ, Kim CS (2011) The RR-type MYB-like transcription factor, AtMYBL, is involved in promoting leaf senescence and modulates an abiotic stress response in Arabidopsis. Plant Cell Physiol 52(1):138–148PubMedCrossRefGoogle Scholar
  177. Zhang J, Shi Y, Zhang X, Du H, Xu B, Huang B (2017a) Melatonin suppression of heat-induced leaf senescence involves changes in abscisic acid and cytokinin biosynthesis and signaling pathways in perennial ryegrass (Lolium perenne L.). Environ Exp Bot 138:36–45CrossRefGoogle Scholar
  178. Zhang WY, Xu YC, Li WL, Yang L, Yue X, Zhang XS, Zhao XY (2014) Transcriptional analyses of natural leaf senescence in maize. PLoS One 9(12):e115617PubMedPubMedCentralCrossRefGoogle Scholar
  179. Zhang XM, Yu HJ, Sun C, Deng J, Zhang X, Liu P, Jiang WJ (2017b) Genome-wide characterization and expression profiling of the NAC genes under abiotic stresses in Cucumis sativus. Plant Physiol Biochem 113:98–109PubMedCrossRefGoogle Scholar
  180. Zhang J, Yu G, Wen W, Ma X, Xu B, Huang B (2015) Functional characterization and hormonal regulation of the PHEOPHYTINASE gene LpPPH controlling leaf senescence in perennial ryegrass. J Exp Bot 67(3):935–945PubMedPubMedCentralCrossRefGoogle Scholar
  181. Zhang H, Zhao M, Song Q, Zhao L, Wang G, Zhou C (2016) Identification and function analyses of senescence-associated WRKYs in wheat. Biochem Biophys Res Commun 474(4):761–767PubMedCrossRefGoogle Scholar
  182. Zhao Y, Chan Z, Gao J, Xing L, Cao M, Yu C, Gong Y (2016) ABA receptor PYL9 promotes drought resistance and leaf senescence. Proc Nat Acad Sci 113(7):1949–1954PubMedCrossRefGoogle Scholar
  183. Zhou X, Jiang Y, Yu D (2011) WRKY22 transcription factor mediates dark-induced leaf senescence in Arabidopsis. Mol Cells 31(4):303–313PubMedPubMedCentralCrossRefGoogle Scholar
  184. Zhu X, Chen J, Xie Z, Gao J, Ren G, Gao S et al (2015) Jasmonic acid promotes degreening via MYC 2/3/4-and ANAC 019/055/072-mediated regulation of major chlorophyll catabolic genes. Plant J 84(3):597–610PubMedCrossRefGoogle Scholar
  185. Zwack PJ, De Clercq I, Howton TC, Hallmark HT, Hurny A, Keshishian EA, Rashotte AM (2016) Cytokinin response factor 6 represses cytokinin-associated genes during oxidative stress. Plant Physiol 172(2):1249–1258PubMedPubMedCentralGoogle Scholar
  186. Zwack PJ, Rashotte AM (2013) Cytokinin inhibition of leaf senescence. Plant Signal Behav 8(7):e24737PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.ICAR- Central Institute of Temperate HorticultureSrinagarIndia
  2. 2.Indian Institute of Integrative MedicineSrinagarIndia
  3. 3.University of SargodhaSargodhaPakistan
  4. 4.Department of Botany and Microbiology, Faculty of ScienceKing Saud UniversityRiyadhSaudi Arabia
  5. 5.Department of BotanyS.P. CollegeSrinagarIndia

Personalised recommendations