Advertisement

Protoplasma

, Volume 256, Issue 1, pp 261–277 | Cite as

Stress-induced changes in the ultrastructure of the photosynthetic apparatus of green microalgae

  • Olga Gorelova
  • Olga Baulina
  • Tatiana Ismagulova
  • Kamilya Kokabi
  • Elena Lobakova
  • Irina Selyakh
  • Larisa Semenova
  • Olga Chivkunova
  • Olga Karpova
  • Pavel Scherbakov
  • Inna Khozin-Goldberg
  • Alexei SolovchenkoEmail author
Original Article
  • 227 Downloads

Abstract

In photosynthetic organisms including unicellular algae, acclimation to and damage by environmental stresses are readily apparent at the level of the photosynthetic apparatus. Phenotypic manifestations of the stress responses include rapid and dramatic reduction of photosynthetic activity and pigment content aimed at mitigating the risk of photooxidative damage. Although the physiological and molecular mechanisms of these events are well known, the ultrastructural picture of the stress responses is often elusive and frequently controversial. We analyzed an extensive set of transmission electron microscopy images of the microalgal cells obtained across species of Chlorophyta and in a wide range of growth conditions. The results of the analysis allowed us to pinpoint distinct ultrastructural changes typical of normal functioning and emergency reduction of the chloroplast membrane system under high light exposure and/or mineral nutrient starvation. We demonstrate the patterns of the stress-related ultrastructural changes including peculiar thylakoid rearrangements and autophagy-like processes and provide an outlook on their significance for implementation of the stress responses.

Keywords

Microalgae Chloroplast Chlorophyll degradation Glycolipids Nutrient starvation Thylakoid reorganization 

Abbreviations

AMPT

Appressed membrane pair thickness

DGDG

Digalactosyldiacylglycerol

EMS

Epichloroplastic membrane structures

FAME

Fatty acid methyl esters

FID

Flame ionization detector

HLS

Hub-like structures

MGDG

Monogalactosyldiacylglycerol

NPQ

Non-photochemical quenching

OB

Oil bodies

PLB

Prolamellar bodies

PSA

Photosynthetic apparatus

RCB

Rubisco-containing bodies

SC

Chloroplast area

SP

Protoplast area

STM

Stroma with thylakoid membranes of the chloroplast

SSTM

Area of the STM

TEM

Transmission electron microscopy

TLC

Thin-layer chromatography

Notes

Acknowledgements

High-pressure freezing and freeze-substitution of microalgal samples was performed in the research resource center “Molecular and cell technologies” of St. Petersburg State University.

Funding information

The electron microscopy studies were carried out at the User Facilities Center of M.V. Lomonosov Moscow State University and jointly funded by the Russian Foundation for Basic Research and the Ministry of Science, Technology and Space, Israel (grant 15-54-06004). Cultivation of microalgae was supported by the Ministry of Science and Education of the Russian Federation (the Agreement number 02.a03.21.0008 of 24 June 2016).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

709_2018_1294_MOESM1_ESM.docx (729 kb)
Online Resource 1 (DOCX 728 kb)
709_2018_1294_MOESM2_ESM.docx (16 kb)
Online Resource 2 (DOCX 16 kb)
709_2018_1294_MOESM3_ESM.docx (13 kb)
Online Resource 3 (DOCX 13 kb)
709_2018_1294_MOESM4_ESM.docx (14 kb)
Online Resource 4 (DOCX 14 kb)

References

  1. Avila-Ospina L, Moison M, Yoshimoto K, Masclaux-Daubresse C (2014) Autophagy, plant senescence, and nutrient recycling. J Exp Bot 65:3799–3811.  https://doi.org/10.1093/jxb/eru039 CrossRefGoogle Scholar
  2. Baulina OI (2012) Ultrastructural plasticity of cyanobacteria. Springer-Verlag, BerlinCrossRefGoogle Scholar
  3. Baulina O, Gorelova O, Solovchenko A, Chivkunova O, Semenova L, Selyakh I, Scherbakov P, Burakova O, Lobakova E (2016) Diversity of the nitrogen starvation responses in subarctic Desmodesmus sp. (Chlorophyceae) strains isolated from symbioses with invertebrates. FEMS Microbiol Ecol 92:fiw031.  https://doi.org/10.1093/femsec/fiw031 CrossRefGoogle Scholar
  4. Berner T, Sukenik A (1998) Photoacclimation in photosynthetic microorganisms: an ultrastructural response. Israel J Plant Sci 46:141–146.  https://doi.org/10.1080/07929978.1998.10676721 CrossRefGoogle Scholar
  5. Berner T, Dubinsky Z, Wyman K, Falkowski P (1989) Photoadaptation and the “package” effect in Dunaliella tertiolecta (Chlorophyceae). J Phycol 25:70–78CrossRefGoogle Scholar
  6. Bryan G, Zdylak AH, Ehret C (1967) Photoinduction of plastids and of chlorophyll in a Chlorella mutant. J Cell Sci 2:513–528Google Scholar
  7. Burgess J (1985) Introduction to plant cell development. CUP Archive, CambridgeGoogle Scholar
  8. Chekanov K, Lobakova E, Selyakh I, Semenova L, Sidorov R, Solovchenko A (2014) Accumulation of astaxanthin by a new Haematococcus pluvialis strain BM1 from the White Sea coastal rocks (Russia). Mar Drugs 12:4504–4520CrossRefGoogle Scholar
  9. Chiba A, Ishida H, Nishizawa NK, Makino A, Mae T (2003) Exclusion of ribulose-1, 5-bisphosphate carboxylase/oxygenase from chloroplasts by specific bodies in naturally senescing leaves of wheat. Plant Cell Physiol 44:914–921CrossRefGoogle Scholar
  10. Davey MP, Horst I, Duong G-H, Tomsett EV, Litvinenko AC, Howe CJ, Smith AG (2014) Triacylglyceride production and autophagous responses in Chlamydomonas reinhardtii depend on resource allocation and carbon source. Eukaryot Cell 13:392–400CrossRefGoogle Scholar
  11. Davidi L, Shimoni E, Khozin-Goldberg I, Zamir A, Pick U (2014) Origin of β-carotene-rich plastoglobuli in Dunaliella bardawil. Plant Physiol 164:2139–2156.  https://doi.org/10.1104/pp.113.235119 CrossRefGoogle Scholar
  12. Deme B, Cataye C, Block MA, Marechal E, Jouhet J (2014) Contribution of galactoglycerolipids to the 3-dimensional architecture of thylakoids. FASEB J 28:3373–3383.  https://doi.org/10.1096/fj.13-247395 CrossRefGoogle Scholar
  13. Du Z-Y, Benning C (2016) Triacylglycerol accumulation in photosynthetic cells in plants and algae. In: Nakamura Y, Li-Beisson Y (eds) Lipids in Plant and Algae Development. Subcellular Biochemistry, vol 86.Springer, Cham, pp 179–205Google Scholar
  14. Du ZY, Lucker BF, Zienkiewicz K, Miller TE, Zienkiewicz A, Sears BB, Kramer DM, Benning C (2018) Galactoglycerolipid lipase PGD1 is involved in thylakoid membrane remodeling in response to adverse environmental conditions in Chlamydomonas. Plant Cell 30:447–465Google Scholar
  15. Fisher T, Berner T, Iluz D, Dubinsky Z (1998) The kinetics of the photoacclimation response of Nannochloropsis sp.(Eustigmatophyceae): a study of changes in ultrastructure and PSU density. J Phycol 34:818–824CrossRefGoogle Scholar
  16. Friedberg I, Goldberg I, Ohad I (1971) A prolamellar body-like structure in Chlamydomonas reinhardi. J Cell Biol 50:268–275CrossRefGoogle Scholar
  17. Garab G, Ughy B, Goss R (2016) Role of MGDG and non-bilayer lipid phases in the structure and dynamics of chloroplast thylakoid membranes. In: Nakamura Y, Li-Beisson Y (eds) Lipids in plant and algaedevelopment. Subcellular Biochemistry, vol 86. Springer, Cham, pp 127–157Google Scholar
  18. Gorelova O, Baulina O, Solovchenko A, Fedorenko T, Kravtsova T, Chivkunova O, Koksharova O, Lobakova E (2012) Green microalgae from associations with White Sea invertebrates. Microbiology 81:505–507.  https://doi.org/10.1134/S002626171204008X CrossRefGoogle Scholar
  19. Gorelova O, Baulina O, Solovchenko A, Chekanov K, Chivkunova O, Fedorenko T, Lobakova E (2015a) Similarity and diversity of the Desmodesmus spp. microalgae isolated from associations with White Sea invertebrates. Protoplasma 252:489–503.  https://doi.org/10.1007/s00709-014-0694-0 CrossRefGoogle Scholar
  20. Gorelova O, Baulina O, Solovchenko A, Selyakh I, Chivkunova O, Semenova L, Scherbakov P, Burakova O, Lobakova E (2015b) Coordinated rearrangements of assimilatory and storage cell compartments in a nitrogen-starving symbiotic chlorophyte cultivated under high light. Arch Microbiol 197:181–195.  https://doi.org/10.1007/s00203-014-1036-5 CrossRefGoogle Scholar
  21. Guiamét JJ, Pichersky E, Nooden LD (1999) Mass exodus from senescing soybean chioroplasts. Plant Cell Physiol 40:986–992CrossRefGoogle Scholar
  22. Hinder B, Schellenberg M, Rodoni S, Ginsburg S, Vogt E, Martinoia E, Matile P, Hörtensteiner S (1996) How plants dispose of chlorophyll catabolites. Directly energized uptake of tetrapyrrolic breakdown products into isolated vacuoles. J Biol Chem 271:27233–27236CrossRefGoogle Scholar
  23. Hoober JK, White RA, Marks DB, Gabriel JL (1994) Biogenesis of thylakoid membranes with emphasis on the process in Chlamydomonas. Photosynth Res 39:15–31CrossRefGoogle Scholar
  24. Hörtensteiner S (2006) Chlorophyll degradation during senescence. Annu Rev Plant Biol 57:55–77CrossRefGoogle Scholar
  25. Horton P (2014) Developments in research on non-photochemical fluorescence quenching: emergence of key ideas, theories and experimental approaches. In: Demmig-Adams B, Garab G, Adams W III, Govindjee (eds) Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria. Springer, Netherlands, pp 73–95Google Scholar
  26. Inoue K (2011) Emerging roles of the chloroplast outer envelope membrane. Trends Plant Sci 16:550–557CrossRefGoogle Scholar
  27. Ishida H, Izumi M, Wada S, Makino A (2014) Roles of autophagy in chloroplast recycling. Biochim Biophys Acta 1837:512–521.  https://doi.org/10.1016/j.bbabio.2013.11.009 CrossRefGoogle Scholar
  28. Ismagulova T, Chekanov K, Gorelova O, Baulina O, Semenova L, Selyakh I, Chivkunova O, Lobakova E, Karpova O, Solovchenko A (2017) A new subarctic strain of Tetradesmus obliquus—part I: identification and fatty acid profiling. J Appl Phycol.  https://doi.org/10.1007/s10811-017-1313-1
  29. Izumi M, Nakamura S (2017) Partial or entire: distinct responses of two types of chloroplast autophagy. Plant Signal Behav 12:e1393137.  https://doi.org/10.1080/15592324.2017.1393137 CrossRefGoogle Scholar
  30. Izumi M, Nakamura S (2018) Chloroplast protein turnover: the influence of extraplastidic processes, including autophagy international. Int J Mol Sci 19:828.  https://doi.org/10.3390/ijms19030828 CrossRefGoogle Scholar
  31. Johnson MP, Brain AP, Ruban AV (2011a) Changes in thylakoid membrane thickness associated with the reorganization of photosystem II light harvesting complexes during photoprotective energy dissipation. Plant Signal Behav 6:1386–1390CrossRefGoogle Scholar
  32. Johnson MP, Goral TK, Duffy CD, Brain AP, Mullineaux CW, Ruban AV (2011b) Photoprotective energy dissipation involves the reorganization of photosystem II light-harvesting complexes in the grana membranes of spinach chloroplasts. The Plant Cell Online 23:1468–1479CrossRefGoogle Scholar
  33. Jouhet J, Maréchal E, Block MA (2007) Glycerolipid transfer for the building of membranes in plant cells. Prog Lipid Res 46:37–55CrossRefGoogle Scholar
  34. Joyard J, Maréchal E, Miège C, Block MA, Dorne AJ, Douce R (2004) Structure, distribution and biosynthesis of glycerolipids from higher plant chloroplasts. In: Siegenthaler PA, Murata N (eds) Lipids in photosynthesis: structure, function and genetics. Springer, Netherlands, pp 21–52CrossRefGoogle Scholar
  35. Joyard J, Ferro M, Masselon C, Seigneurin-Berny D, Salvi D, Garin J, Rolland N (2010) Chloroplast proteomics highlights the subcellular compartmentation of lipid metabolism. Prog Lipid Res 49:128–158.  https://doi.org/10.1016/j.plipres.2009.10.003 CrossRefGoogle Scholar
  36. Khozin‐Goldberg I, Didi‐Cohen S, Shayakhmetova I, Cohen Z (2002) Biosynthesis of eicosapentaenoic acid (EPA) in the freshwater eustigmatophyte Monodus subterraneus (Eustigmatophyceae). J Phycol 38:745–756Google Scholar
  37. Kimball SL, Salisbury FB (1973) Ultrastructural changes of plants exposed to low temperatures. Am J Bot 60:1028–1033CrossRefGoogle Scholar
  38. Kirchhoff H (2018) Structure-function relationships in photosynthetic membranes: challenges and emerging fields. Plant Sci 266:76–82.  https://doi.org/10.1016/j.plantsci.2017.09.021 CrossRefGoogle Scholar
  39. Klein S, Schiff JA, Holowinsky AW (1972) Events surrounding the early development of Euglena chloroplasts: II. Normal development of fine structure and the consequences of preillumination. Dev Biol 28:253–273CrossRefGoogle Scholar
  40. Kratsch H, Wise RR (2000) The ultrastructure of chilling stress. Plant Cell Environ 23:337–350CrossRefGoogle Scholar
  41. Li F, Vierstra RD (2012) Autophagy: a multifaceted intracellular system for bulk and selective recycling. Trends Plant Sci 17:526–537CrossRefGoogle Scholar
  42. Lichtenthaler HK, Prenzel U, Douce R, Joyard J (1981) Localization of prenylquinones in the envelope of spinach chloroplasts. Biochim Biophys Acta 641:99–105.  https://doi.org/10.1016/0005-2736(81)90572-1 CrossRefGoogle Scholar
  43. Maeda M, Thompson GA (1986) On the mechanism of rapid plasma membrane and chloroplast envelope expansion in Dunaliella salina exposed to hypoosmotic shock. J Cell Biol 102:289–297CrossRefGoogle Scholar
  44. Majeran W, Olive J, Drapier D, Vallon O, Wollman F-A (2001) The light sensitivity of ATP synthase mutants of Chlamydomonas reinhardtii. Plant Physiol 126:421–433CrossRefGoogle Scholar
  45. Marty F (1999) Plant vacuoles. Plant Cell 11:587–599Google Scholar
  46. Matile P, Hörtensteiner S, Thomas H (1999) Chlorophyll degradation. Annu Rev Plant Biol 50:67–95CrossRefGoogle Scholar
  47. Moellering ER, Muthan B, Benning C (2010) Freezing tolerance in plants requires lipid remodeling at the outer chloroplast membrane. Science 330:226–228CrossRefGoogle Scholar
  48. Mueller D, Vincent W, Bonilla S, Laurion I (2005) Extremotrophs, extremophiles and broadband pigmentation strategies in a high arctic ice shelf ecosystem. FEMS Microbiol Ecol 53:73–87CrossRefGoogle Scholar
  49. Neuhaus H, Wagner R (2000) Solute pores, ion channels, and metabolite transporters in the outer and inner envelope membranes of higher plant plastids. BBA-Biomembranes 1465:307–323CrossRefGoogle Scholar
  50. Nordhues A, Schöttler MA, Unger AK, Geimer S, Schönfelder S, Schmollinger S, Rütgers M, Finazzi G, Soppa B, Sommer F, Mühlhaus T (2012) Evidence for a role of VIPP1 in the structural organization of the photosynthetic apparatus in Chlamydomonas. Plant Cell 24:637–659.  https://doi.org/10.1105/tpc.111.092692 CrossRefGoogle Scholar
  51. Pal D, Khozin-Goldberg I, Cohen Z, Boussiba S (2011) The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Appl Microbiol Biotechnol 90:1429–1441.  https://doi.org/10.1007/s00253-011-3170-1 CrossRefGoogle Scholar
  52. Park H, Kreunen SS, Cuttriss AJ, DellaPenna D, Pogson BJ (2002) Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis. Plant Cell 14:321–332CrossRefGoogle Scholar
  53. Pribil M, Labs M, Leister D (2014) Structure and dynamics of thylakoids in land plants. J Exp Bot 65:1955–1972.  https://doi.org/10.1093/jxb/eru090 CrossRefGoogle Scholar
  54. Reynolds E (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212CrossRefGoogle Scholar
  55. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61Google Scholar
  56. Ruban AV (2016) Non-photochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protection against photodamage. Plant Physiol 170:1903–1916CrossRefGoogle Scholar
  57. Scherbakov P, Ismagulova T, Chernov T, Gorelova O, Selyakh I, Semenova L, Baulina O, Chivkunova O, Lobakova E, Solovchenko A (2017) A new subarctic strain of Tetradesmus obliquus. Part II: comparative studies of CO2-stress tolerance. J Appl Phycol.  https://doi.org/10.1007/s10811-017-1334-9
  58. Selstam E, Schelin J, Williams WP, Brain AP (2007) Structural organisation of prolamellar bodies (PLB) isolated from Zea mays. Parallel TEM, SAXS and absorption spectra measurements on samples subjected to freeze–thaw, reduced pH and high-salt perturbation. Biochim Biophys Acta Biomembr 1768:2235–2245CrossRefGoogle Scholar
  59. Shebanova A, Ismagulova T, Solovchenko A, Baulina O, Lobakova E, Ivanova A, Moiseenko A, Shaitan K, Polshakov V, Nedbal L, Gorelova O (2017) Versatility of the green microalga cell vacuole function as revealed by analytical transmission electron microscopy. Protoplasma 254:1323–1340CrossRefGoogle Scholar
  60. Simionato D, Block MA, La Rocca N, Jouhet J, Maréchal E, Finazzi G, Morosinotto T (2013) Response of nannochloropsis gaditana to nitrogen starvation includes a de novo biosynthesis of triacylglycerols, a decrease of chloroplast galactolipids and a reorganization of the photosynthetic apparatus. Eukaryot Cell 12:392–400CrossRefGoogle Scholar
  61. Solovchenko A, Neverov K (2017) Carotenogenic response in photosynthetic organisms: a colorful story. Photosynth Res 133:31–47CrossRefGoogle Scholar
  62. Solovchenko A, Merzlyak M, Khozin-Goldberg I, Cohen Z, Boussiba S (2010) Coordinated carotenoid and lipid syntheses induced in Parietochloris incisa (Chlorophyta, Trebouxiophyceae) mutant deficient in Δ5 desaturase by nitrogen starvation and high light. J Phycol 46:763–772.  https://doi.org/10.1111/j.1529-8817.2010.00849.x CrossRefGoogle Scholar
  63. Solovchenko A, Chivkunova O, Maslova I (2011) Pigment composition, optical properties, and resistance to photodamage of the microalga Haematococcus pluvialis cultivated under high light. Russ J Plant Physiol 58:9–17.  https://doi.org/10.1134/S1021443710061056 CrossRefGoogle Scholar
  64. Solovchenko A, Chivkunova O, Semenova L, Selyakh I, Shcherbakov P, Karpova E, Lobakova E (2013) Stress-induced changes in pigment and fatty acid content in the microalga Desmodesmus sp. isolated from a White Sea hydroid. Russ J Plant Physiol 60:313–321.  https://doi.org/10.1007/s00253-012-4677-9 CrossRefGoogle Scholar
  65. Solovchenko A, Gorelova O, Selyakh I, Semenova L, Chivkunova O, Baulina O, Lobakova E (2014) Desmodesmus sp. 3Dp86E-1-a novel symbiotic chlorophyte capable of growth on pure CO2. Mar Biotechnol 16:495–501.  https://doi.org/10.1007/s10126-014-9572-1 CrossRefGoogle Scholar
  66. Solovchenko A, Gorelova O, Baulina O, Selyakh I, Semenova L, Chivkunova O, Scherbakov P, Lobakova E (2015a) Physiological plasticity of symbiotic Desmodesmus (Chlorophyceae) isolated from taxonomically distant White Sea invertebrates. Russ J Plant Physiol 62:653–663.  https://doi.org/10.1134/S1021443715050167 CrossRefGoogle Scholar
  67. Solovchenko A, Gorelova O, Selyakh I, Pogosyan S, Baulina O, Semenova L, Chivkunova O, Voronova E, Konyukhov I, Scherbakov P, Lobakova E (2015b) A novel CO2-tolerant symbiotic Desmodesmus (Chlorophyceae, Desmodesmaceae): acclimation to and performance at a high carbon dioxide level. Algal Res 11:399–410CrossRefGoogle Scholar
  68. Solovchenko A, Gorelova O, Selyakh I, Baulina O, Semenova L, Logacheva M, Chivkunova O, Scherbakov P, Lobakova E (2016) Nitrogen availability modulates CO2 tolerance in a symbiotic chlorophyte. Algal Res 16:177–188.  https://doi.org/10.1016/j.algal.2016.03.002 CrossRefGoogle Scholar
  69. Takamiya KI, Tsuchiya T, Ohta H (2000) Degradation pathway(s) of chlorophyll: what has gene cloning revealed? Trends Plant Sci 5:426–431CrossRefGoogle Scholar
  70. Topf J, Gong H, Timberg R, Mets L, Ohad I (1992) Thylakoid membrane energization and swelling in photoinhibited Chlamydomonas cells is prevented in mutants unable to perform cyclic electron flow. Photosynth Res 32:59–69CrossRefGoogle Scholar
  71. Treves H, Raanan H, Kedem I, Murik O, Keren N, Zer H, Berkowicz SM, Giordano M, Norici A, Shotland Y, Ohad I (2016) The mechanisms whereby the green alga Chlorella ohadii, isolated from desert soil crust, exhibits unparalleled photodamage resistance. New Phytol 210:1229–1243CrossRefGoogle Scholar
  72. Varshney P, Mikulic P, Vonshak A, Beardall J, Wangikar PP (2014) Extremophilic micro-algae and their potential contribution in biotechnology. Bioresour Technol 184:363–372CrossRefGoogle Scholar
  73. Velikanov G, Ponomareva A, Belova L, Ilyina T (2011) Stromule-like protrusions of plastid membrane envelope in root cells. Cell Tissue Biol 5:305–310CrossRefGoogle Scholar
  74. Wang ZT, Ullrich N, Joo S, Waffenschmidt S, Goodenough U (2009) Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot Cell 8:1856–1868.  https://doi.org/10.1128/ec.00272-09 CrossRefGoogle Scholar
  75. Xie Q, Michaeli S, Peled-Zehavi H, Galili G (2015) Chloroplast degradation: one organelle, multiple degradation pathways. Trends Plant Sci 20:264–265CrossRefGoogle Scholar
  76. Yoshimoto K (2012) Beginning to understand autophagy, an intracellular self-degradation system in plants. Plant Cell Physiol 53:1355–1365.  https://doi.org/10.1093/pcp/pcs099 CrossRefGoogle Scholar
  77. Zorin B, Pal-Nath D, Lukyanov A, Smolskaya S, Kolusheva S, Didi-Cohen S, Boussiba S, Cohen Z, Khozin-Goldberg I, Solovchenko A (2017) Arachidonic acid is important for efficient use of light by the microalga Lobosphaera incisa under chilling stress. Biochim Biophys Acta 1862:853–868CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Olga Gorelova
    • 1
  • Olga Baulina
    • 1
  • Tatiana Ismagulova
    • 1
  • Kamilya Kokabi
    • 2
  • Elena Lobakova
    • 1
  • Irina Selyakh
    • 1
  • Larisa Semenova
    • 1
  • Olga Chivkunova
    • 1
  • Olga Karpova
    • 1
  • Pavel Scherbakov
    • 1
  • Inna Khozin-Goldberg
    • 2
  • Alexei Solovchenko
    • 1
    • 3
    Email author
  1. 1.Department of Bioengineering, Faculty of BiologyMoscow State UniversityMoscowRussia
  2. 2.Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology for Drylands, The J. Blaustein Institutes for Desert ResearchBen-Gurion University of the NegevMidreshet Ben GurionIsrael
  3. 3.Peoples Friendship University of Russia (RUDN University)MoscowRussia

Personalised recommendations