Advertisement

Protoplasma

, Volume 255, Issue 5, pp 1373–1386 | Cite as

Mitochondria structural reorganization during mouse embryonic stem cell derivation

  • Lyubov A. Suldina
  • Ksenia N. MorozovaEmail author
  • Aleksei G. Menzorov
  • Elena A. Kizilova
  • Elena Kiseleva
Original Article

Abstract

Mouse embryonic stem (ES) cells are widely used in developmental biology and transgenic research. Despite numerous studies, ultrastructural reorganization of inner cell mass (ICM) cells during in vitro culture has not yet been described in detail. Here, we for the first time performed comparative morphological and morphometric analyses of three ES cell lines during their derivation in vitro. We compared morphological characteristics of blastocyst ICM cells at 3.5 and 4.5 days post coitum on feeder cells (day 6, passage 0) with those of ES cells at different passages (day 19, passage 2; day 25, passage 4; and passage 15). At passage 0, there were 23–36% of ES-like cells with various values of the medium cross-sectional area and nucleocytoplasmic parameters, 55% of fibroblast-like (probably trophoblast derivatives), and ~ 19% of dying cells. ES-like cells at passage 0 contained autolysosomes and enlarged mitochondria with reduced numerical density per cell. There were three types of mitochondria that differed in matrix density and cristae width. For the first time, we revealed cells that had two and sometimes three morphologically distinct mitochondria types in the cytoplasm. At passage 2, there were mostly ES cells with a high nucleocytoplasmic ratio and a cytoplasm depleted of organelles. At passage 4, ES cell morphology and morphometric parameters were mostly stable with little heterogeneity. According to our data, cellular structures of ICM cells undergo destabilization during derivation of an ES cell line with subsequent reorganization into the structures typical for ES cells. On the basis of ultrastructural analysis of mitochondria, we believe that the functional activity of these organelles changes during early stages of ES cell formation from the ICM.

Keywords

Embryonic stem cell Mitochondria Electron microscopy Cell ultrastructure 

Abbreviations

dpc

days post coitum

EDTA

ethylenediaminetetraacetic acid

ER

endoplasmic reticulum

ESC

embryonic stem cell

FBS

fetal bovine serum

ICM

inner cell mass

KSR

knockout serum replacement

LIF ESGRO

leukemia inhibitory factor

NEAA

non-essential amino acid

TEM

transmission electron microscopy

Notes

Acknowledgments

We are thankful to Antonina I. Zhelezova and Aleftina N. Golubitsa for assistance with the experiments on mice. The study was supported by the Federal Agency for Scientific Organizations program for support of bioresource collections. We thank the Collective Center of ICG SB RAS “Collection of Pluripotent Human and Mammalian Cell Cultures for Biological and Biomedical Research” (http://ckp.icgen.ru/cells/) for providing the cell lines, and we are grateful to the Interinstitutional Shared Center for Microscopic Analysis of Biological Objects (ICG SB RAS, Novosibirsk) for providing the microscopy equipment for this study. The English language was corrected and certified by shevchuk-editing.com.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

References

  1. Alharbi S, Elsafadi M, Mobarak M, Alrwili A, Vishnubalaji R, Manikandan M, al-Qudsi F, Karim S, al-Nabaheen M, Aldahmash A, Mahmood A (2014) Ultrastructural characteristics of three undifferentiated mouse embryonic stem cell lines and their differentiated three-dimensional derivatives: a comparative study. Cell Reprogram 16(2):151–165.  https://doi.org/10.1089/cell.2013.0073 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Baharvand H, Matthaei KI (2003) The ultrastructure of mouse embryonic stem cells. Reprod BioMed Online 7(3):330–335CrossRefPubMedGoogle Scholar
  3. Bryja V, Bonilla S, Arenas E (2006) Derivation of mouse embryonic stem cells. Nat Protoc 1(4):2082–2087.  https://doi.org/10.1038/nprot.2006.355 CrossRefPubMedGoogle Scholar
  4. Cech S, Sedlácková M (1983) Ultrastructure and morphometric analysis of preimplantation mouse embryos. Cell Tissue Res 230(3):661–670CrossRefPubMedGoogle Scholar
  5. Chen CT, Hsu SH, Wei YH (2012) Mitochondrial bioenergetic function and metabolic plasticity in stem cell differentiation and cellular reprogramming. Biochim Biophys Acta 1820(5):571–576.  https://doi.org/10.1016/j.bbagen.2011.09.013 CrossRefPubMedGoogle Scholar
  6. Dalton CM, Carroll J (2013) Biased inheritance of mitochondria during asymmetric cell division in the mouse oocyte. J Cell Sci 126(13):2955–2964.  https://doi.org/10.1242/jcs.128744 CrossRefPubMedPubMedCentralGoogle Scholar
  7. De Martino C, Floridi A, Marcante ML, Malorni W, Scorza Barcellona P, Bellocci M, Silvestrini B (1979) Morphological, histochemical and biochemical studies on germ cell mitochondria of normal rats. Cell Tissue Res 196(1):1–22CrossRefPubMedGoogle Scholar
  8. Dumollard R, Duchen M, Carroll J (2007) The role of mitochondrial function in the oocyte and embryo. Curr Top Dev Biol 77:21–49.  https://doi.org/10.1016/S0070-2153(06)77002-8 CrossRefPubMedGoogle Scholar
  9. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156CrossRefPubMedGoogle Scholar
  10. Facucho-Oliveira JM, Alderson J, Spikings EC, Egginton S, St John JC (2007) Mitochondrial DNA replication during differentiation of murine embryonic stem cells. J Cell Sci 120(22):4025–4034.  https://doi.org/10.1242/jcs.016972 CrossRefPubMedGoogle Scholar
  11. Gambaro K, Aberdam E, Virolle T, Aberdam D, Rouleau M (2006) BMP-4 induces a Smad-dependent apoptotic cell death of mouse embryonic stem cell-derived neural precursors. Cell Death Diff 13:1075–1087.  https://doi.org/10.1038/sjcdd4401799 CrossRefGoogle Scholar
  12. von Guo G, Meyenn F, Santos F, Chen Y, Reik W, Bertone P, Smith A, Nichols J (2016) Naive pluripotent stem cells derived directly from isolated cells of the human inner cell mass. Stem Cell Reports 6(4):437–446.  https://doi.org/10.1016/j.stemcr.2016.02.005 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hackenbrock CR (1972) Energy-linked ultrastructural transformations in isolated liver mitochondria and mitoplasts. Preservation of configurations by freeze-cleaving compared to chemical fixation. J Cell Biol 53(2):450–465CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hackenbrock CR, Rehn TG, Weinbach EC, Lemasters JJ (1971) Oxidative phosphorylation and ultrastructural transformation in mitochondria in the intact ascites tumor cell. J Cell Biol 51(1):123–137CrossRefPubMedPubMedCentralGoogle Scholar
  15. Halbisen MA, Ralston A (2014) Have you seen? Shaking up the salt and pepper: origins of cellular heterogeneity in the inner cell mass of the blastocyst. EMBO J 33(4):280–281.  https://doi.org/10.1002/embj.201387638 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hanna JH, Saha K, Jaenisch R (2010) Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell 143(4):508–525.  https://doi.org/10.1016/j.cell.2010.10.008 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hogan B, Beddington R, Constantini F, Lacy E (1994) Manipulating the mouse embryo. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory PressGoogle Scholar
  18. Kelly RD, Mahmud A, McKenzie M, Trounce IA, St John JC (2012) Mitochondrial DNA copy number is regulated in a tissue specific manner by DNA methylation of the nuclear-encoded DNA polymerase gamma A. Nucleic Acids Res 40(20):10124–10138CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kalmar T, Lim C, Hayward P, Muñoz-Descalzo S, Nichols J, Garcia-Ojalvo J, Martinez Arias A (2009) Regulated fluctuations in nanog expression mediate cell fate decisions in embryonic stem cells. PLoS Biol 7(7):e1000149.  https://doi.org/10.1371/journal.pbio.1000149 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kim H, Jang H, Kim TW, Kang BH, Lee SE, Jeon YK, Chung DH, Choi J, Shin J, Cho EJ, Youn HD (2015) Core pluripotency factors directly regulate metabolism in embryonic stem cell to maintain pluripotency. Stem Cells 33(9):2699–2711.  https://doi.org/10.1002/stem.2073 CrossRefPubMedGoogle Scholar
  21. Kowno M, Watanabe-Susaki K, Ishimine H, Komazaki S, Enomoto K, Seki Y, Wang YY, Ishigaki Y, Ninomiya N, Noguchi TA, Kokubu Y, Ohnishi K, Nakajima Y, Kato K, Intoh A, Takada H, Yamakawa N, Wang PC, Asashima M, Kurisaki A (2014) Prohibitin 2 regulates the proliferation and lineage-specific differentiation of mouse embryonic stem cells in mitochondria. PLoS One 9(4):e81552.  https://doi.org/10.1371/journal.pone.0081552 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kruglova AA, Matveeva NM, Gridina MM, Battulin NR, Karpov A, Kiseleva EV, Morozova KN, Serov OL (2010) Dominance of parental genomes in embryonic stem cell/fibroblast hybrid cells depends on the ploidy of the somatic partner. Cell Tissue Res 340(3):437–450.  https://doi.org/10.1007/s00441-010-0987-3 CrossRefPubMedGoogle Scholar
  23. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78(12):7634–7638CrossRefPubMedPubMedCentralGoogle Scholar
  24. Martinez Y, Béna F, Gimelli S, Tirefort D, Dubois-Dauphin M, Krause KH, Preynat-Seauve O (2012) Cellular diversity within embryonic stem cells: pluripotent clonal sublines show distinct differentiation potential. J Cell Mol Med 16(3):456–467.  https://doi.org/10.1111/j.1582-4934.2011.01334.x CrossRefPubMedPubMedCentralGoogle Scholar
  25. Menzorov A, Pristyazhnyuk I, Kizilova H, Yunusova A, Battulin N, Zhelezova A, Golubitsa A, Serov O (2016) Cytogenetic analysis and Dlk1-Dio3 locus epigenetic status of mouse embryonic stem cells during early passages. Cytotechnology 68(1):61–71.  https://doi.org/10.1007/s10616-014-9751-y CrossRefPubMedGoogle Scholar
  26. Morozova KN, Kiseleva EV (2006) Morphometrical analysis of endoplasmic reticulum dynamics in growing amphibian oocytes. Tsitologiia 48(12):980–990PubMedGoogle Scholar
  27. Murohashi M, Nakamura T, Tanaka S, Ichise T, Yoshida N, Yamamoto T, Shibuya M, Schlessinger J, Gotoh N (2010) An FGF4-FRS2alpha-Cdx2 axis in trophoblast stem cells induces Bmp4 to regulate proper growth of early mouse embryos. Stem Cells 28(1):113–121.  https://doi.org/10.1002/stem.247 PubMedCrossRefGoogle Scholar
  28. Niwa H, Ogawa K, Shimosato D, Adachi K (2009) A parallel circuit of LIF signaling pathways maintains pluripotency of mouse ES cells. Nature 460(7251):118–122.  https://doi.org/10.1038/nature08113 CrossRefPubMedGoogle Scholar
  29. Pan H, Cai N, Li M, Liu GH, Izpisua Belmonte JC (2013) Autophagic control of cell ‘stemness’. EMBO Mol Med 5(3):327–331.  https://doi.org/10.1002/emmm.201201999 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Perkins GA, Ellisman MH (2011) Mitochondrial configurations in peripheral nerve suggest differential ATP production. J Struct Biol 173(1):117–127.  https://doi.org/10.1016/j.jsb.2010.06.017 CrossRefPubMedGoogle Scholar
  31. Pickles S, Vigié P, Youle RJ (2018) Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr Biol 28(4):R170–R185.  https://doi.org/10.1016/j.cub.2018.01.004 CrossRefPubMedGoogle Scholar
  32. Prigione A, MV R-P’r, Bukowiecki R, Adjaye J (2015) Metabolic restructuring and cell fate conversion. Cell Mol Life Sci 72(9):1759–1777.  https://doi.org/10.1007/s00018-015-1834-1 CrossRefPubMedGoogle Scholar
  33. Rehman J (2010) Empowering self-renewal and differentiation: the role of mitochondria in stem cells. J Mol Med (Berl) 88:981–986.  https://doi.org/10.1007/s00109-010-0678-2 CrossRefGoogle Scholar
  34. Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212CrossRefPubMedPubMedCentralGoogle Scholar
  35. Rohwedel J, Guan K, Wobus AM (1999) Induction of cellular differentiation by retinoic acid in vitro. Cells Tissues Organs 165(3–4):190–202CrossRefPubMedGoogle Scholar
  36. Sathananthan H, Pera M, Trounson A (2002) The fine structure of human embryonic stem cells. Reprod BioMed Online 4(1):56–61CrossRefPubMedGoogle Scholar
  37. Stern S, Biggers JD, Anderson E (1971) Mitochondria and early development of the mouse. J Exp Zool 176(2):179–191CrossRefPubMedGoogle Scholar
  38. Suhr ST, Chang EA, Tjong J, Alcasid N, Perkins GA, Goissis MD, Ellisman MH, Perez GI, Cibelli JB (2010) Mitochondrial rejuvenation after induced pluripotency. PLoS One 5(11):e14095.  https://doi.org/10.1371/journal.pone.0014095 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Tang F, Barbacioru C, Bao S, Lee C, Nordman E, Wang X, Lao K, Surani MA (2010) Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-Seq analysis. Cell Stem Cell 6(5):468–478.  https://doi.org/10.1016/j.stem.2010.03.015 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Todd LR, Damin MN, Gomathinayagam R, Horn SR, Means AR, Sankar U (2010) Growth factor erv1-like modulates Drp1 to preserve mitochondrial dynamics and function in mouse embryonic stem cells. Mol Biol Cell 21(7):1225–1236.  https://doi.org/10.1091/mbc.E09-11-0937 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Weibel ER (1969) Stereological principles for morphometry in electron microscopic cytology. Int Rev Cytology 26:235–302CrossRefGoogle Scholar
  42. Wilkerson DC, Sankar U (2011) Mitochondria: a sulfhydryl oxidase and fission GTPase connect mitochondrial dynamics with pluripotency in embryonic stem cells. Int J Biochem Cell Biol 43(9):1252–1256.  https://doi.org/10.1016/j.biocel.2011.05.005 CrossRefPubMedGoogle Scholar
  43. Wobus AM, Rohwedel J, Maltsev V, Hescheler J (1994) In vitro differentiation of embryonic stem cells into cardiomyocytes or skeletal muscle cells is specifically modulated by retinoic acid. Roux Arch Dev Biol 204(1):36–45.  https://doi.org/10.1007/BF00189066 CrossRefPubMedGoogle Scholar
  44. Xu X, Duan S, Yi F, Ocampo A, Liu GH, Izpisua Belmonte JC (2013) Mitochondrial regulation in pluripotent stem cells. Cell Metab 18(3):325–332.  https://doi.org/10.1016/j.cmet.2013.06.005 CrossRefPubMedGoogle Scholar
  45. Yurttas P, Vitale AM, Fitzhenry RJ, Cohen-Gould L, Wu W, Gossen JA, Coonrod SA (2008) Role for PADI6 and the cytoplasmic lattices in ribosomal storage in oocytes and translational control in the early mouse embryo. Development 135(15):2627–2636.  https://doi.org/10.1242/dev.016329 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Zhang J, Ratanasirintrawoot S, Chandrasekaran S, Wu Z, Ficarro SB, Yu C, Shinoda G (2016) LIN28 regulates stem cell metabolism and conversion to primed pluripotency. Cell Stem Cell 19(1):66–80CrossRefPubMedGoogle Scholar
  47. Zhou W, Choi M, Margineantu D, Margaretha L, Hesson J, Cavanaugh C, Blau CA, Horwitz MS, Hockenbery D, Ware C, Ruohola-Baker H (2012) HIF1α induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition. EMBO J 31(9):2103–2116.  https://doi.org/10.1038/emboj.2012.71 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Cytology and Genetics SB RASRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations