Advertisement

Protoplasma

, Volume 255, Issue 4, pp 1161–1177 | Cite as

Overexpression of AlTMP2 gene from the halophyte grass Aeluropus littoralis in transgenic tobacco enhances tolerance to different abiotic stresses by improving membrane stability and deregulating some stress-related genes

  • Walid Ben-Romdhane
  • Rania Ben-Saad
  • Donaldo Meynard
  • Nabil Zouari
  • Ali Mahjoub
  • Lotfi Fki
  • Emmanuel Guiderdoni
  • Abdullah Al-Doss
  • Afif Hassairi
Original Article
  • 253 Downloads

Abstract

Herein, we report isolation of the AlTMP2 gene from the halophytic C4 grass Aeluropus littoralis. The subcellular localization suggested that AlTMP2 is a plasma membrane protein. In A. littoralis exposed to salt and osmotic stresses, the AlTMP2 gene was induced early and at a high rate, but was upregulated relatively later in response to abscisic acid and cold treatments. Expression of AlTMP2 in tobacco conferred improved tolerance against salinity, osmotic, H2O2, heat, and freezing stresses at the germination and seedling stages. Under control conditions, no growth or yield penalty were mentioned in transgenic plants due to the constitutive expression of AlTMP2. Interestingly, under greenhouse conditions, the seed yield of transgenic plants was significantly higher than that of non-transgenic (NT) plants grown under salt or drought stress. Furthermore, AlTMP2 plants had less electrolyte leakage, higher membrane stability, and lower Na+ and higher K+ accumulation than NT plants. Finally, six stress-related genes were shown to be deregulated in AlTMP2 plants relative to NT plants under both control and stress conditions. Collectively, these results indicate that AlTMP2 confers abiotic stress tolerance by improving ion homeostasis and membrane integrity, and by deregulating certain stress-related genes.

Keywords

Abiotic stress tolerance Aeluropus littoralis AlPMP2 Ion homeostasis Membrane stability Electrolyte leakage 

Notes

Acknowledgments

This work was funded by The National Plan for Science Technology and Innovation, http://npst.ksu.edu.sa/en, (NPSTI, Project No. 11-Bio1828-02) in the Kingdom of Saudi Arabia. The authors are grateful to the Deanship of Scientific Research, King Saud University and Agricultural Research Center, College of Food and Agriculture Sciences. The authors thank the Visiting Professor Program of King Saud University Saudi Arabia and the Agropolis Foundation under the REFUGE platform, CIRAD-Montpellier France, for encouraging this collaborative work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

709_2018_1223_MOESM1_ESM.docx (4.7 mb)
ESM 1 (DOCX 4833 kb)
709_2018_1223_MOESM2_ESM.docx (20 kb)
ESM 2 (DOCX 20 kb)

References

  1. Arnon DI (1949) Copper enzymes in isolated chloroplasts-polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bassil E, Coku A, Blumwald E (2012) Cellular ion homeostasis: emerging roles of intracellular NHX Na/H antiporters in plant growth and development. J Exp Bot 63:5727–5740CrossRefPubMedGoogle Scholar
  3. Ben Romdhane W, Ben-Saad R, Meynard D, Verdeil JL, Azaza J, Zouari N, Fki L, Guiderdoni E, Al-Doss A, Hassairi A (2017) Ectopic expression of Aeluropus littoralis plasma membrane protein gene AlTMP1 confers abiotic stress tolerance in transgenic tobacco by improving water status and cation homeostasis. Int J Mol Sci 18(4):692CrossRefPubMedCentralGoogle Scholar
  4. Ben Saad R, Ben Romdhan W, Zouari N, Azaza J, Mieulet D, Verdeil J-L, Guiderdoni E, Hassairi A (2011) Promoter of the AlSAP gene from the halophyte grass Aeluropus littoralis directs developmental-regulated, stress-inducible, and organ-specific gene expression in transgenic tobacco. Transgenic Res 20:1003–1018CrossRefGoogle Scholar
  5. Ben Saad R, Ben Ramdhan W, Zouari N, Azaza J, Mieulet D, Guiderdoni E, Ellouz R, Hassairi A (2012a) Marker-free transgenic durum wheat cv. Karim expressing the AlSAP gene exhibits a high level of tolerance to salinity and dehydration stresses. Mol Breed 30:521–533CrossRefGoogle Scholar
  6. Ben Saad R, Fabre D, Mieulet D, Meynard D, Dingkuhn M, Al-Doss A, Guiderdoni E, Hassairi A (2012b) Expression of the Aeluropus littoralis AlSAP gene in rice confers broad tolerance to abiotic stresses through maintenance of photosynthesis. Plant Cell Environ 35:626–643CrossRefPubMedGoogle Scholar
  7. Ben Saad R, Meynard D, Ben Romdhane W, Mieulet D, Verdeil JL, Al-Doss A, Guiderdoni E, Hassairi A (2015) The promoter of the AlSAP gene from the halophyte grass Aeluropus littoralis directs a stress-inducible expression pattern in transgenic rice plants. Plant Cell Rep 34:1791–1806CrossRefPubMedGoogle Scholar
  8. Ben Saad R, Zouari N, Ben Ramdhan W, Azaza J, Meynard D, Guiderdoni E, Hassairi A (2010) Improved drought and salt stress tolerance in transgenic tobacco overexpressing a novel A20/AN1 zinc-finger “AlSAP” gene isolated from the halophyte grass Aeluropus littoralis. Plant Mol Biol 72:171–190CrossRefPubMedGoogle Scholar
  9. Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434CrossRefPubMedGoogle Scholar
  10. Brown APC, Dunn MA, Goddard NJ, Hughes MA (2001) Identification of a novel low-temperature-response element in the promoter of the barley (Hordeum vulgare L) gene blt101.1. Planta 213:770–780CrossRefPubMedGoogle Scholar
  11. Capel J, Jarillo JA, Salinas J, Martinez-Zapater JM (1997) Two homologous low-temperature-inducible genes from Arabidopsis encode highly hydrophobic proteins. Plant Physiol 115:569–576CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chang-Qing Z, Shunsaku N, Shenkui L, Tetsuo T (2008) Characterization of two plasma membrane protein 3 genes (PutPMP3) from the alkali grass, Puccinellia tenuiflora, and functional comparison of the rice homologues, OsLti6a/b from rice. BMB Rep 41:448–454CrossRefPubMedGoogle Scholar
  13. Chen XY, Bao HXGDL, Guo J, Jia WT, Tai F, Nie LL, Jiang P, Feng JJ, Lv SL, Li YX (2014) Na+/H+ exchanger 1 participates in tobacco disease defence against Phytophthora parasitica var. nicotianae by affecting vacuolar pH and priming the antioxidative system. J Exp Bot 65:6107–6122CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763CrossRefPubMedGoogle Scholar
  15. Feng D-R, Liu B, Li W-Y, He Y-M, Qi K-B, Wang H-B, Wang J-F (2009) Over-expression of a cold-induced plasma membrane protein gene (MpRCI) from plantain enhances low temperature-resistance in transgenic tobacco. Environ Exp Bot 65:395–402CrossRefGoogle Scholar
  16. Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963CrossRefPubMedGoogle Scholar
  17. Fu J, Zhang DF, Liu YH, Ying S, Shi YS, Song YC, Li Y, Wang TY (2012) Isolation and characterization of maize PMP3 genes involved in salt stress tolerance. PLoS One 7:e31101CrossRefPubMedPubMedCentralGoogle Scholar
  18. Galvez AF, Gulick PJ, Dvorak J (1993) Characterization of the early stages of genetic salt-stress responses in salt-tolerant Lophopyrum elongatum, salt-sensitive wheat, and their Amphiploid. Plant Physiol 103:257–265CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854–1865CrossRefPubMedPubMedCentralGoogle Scholar
  20. Giri B, Kapoor R, Mukerji K (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microb Ecol 54:753–760CrossRefPubMedGoogle Scholar
  21. Goddard NJ, Dunn MA, Zhang L, White AJ, Jack PL, Hughes MA (1993) Molecular analysis and spatial expression pattern of a low-temperature-specific barley gene, Blt101. Plant Mol Biol 23:871–879CrossRefPubMedGoogle Scholar
  22. Gulick PJ, Dvorak J (1992) Coordinate gene response to salt stress in Lophopyrum elongatum. Plant Physiol 100:1384–1388CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gulick PJ, Shen W, An H (1994) ESI3, a stress-induced gene from Lophopyrum elongatum. Plant Physiol 104:799–800CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hayat S, Hasan SA, Yusuf M, Hayat Q, Ahmad A (2010) Effect of 28-homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata. Environ Exp Bot 69:105–112CrossRefGoogle Scholar
  25. Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218CrossRefGoogle Scholar
  26. Horie T, Yoshida K, Nakayama H, Yamada K, Oiki S, Shinmyo A (2001) Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. Plant J 27:129–138CrossRefPubMedGoogle Scholar
  27. Horsch RB, Fry J, Hoffmann N, Neidermeyer J, Rogers SG, Fraley RT (1989) Leaf disc transformation. In: Galvin SB, Schilperoort RA (eds) Plant molecular biology manual. Springer, pp 63–71Google Scholar
  28. Hurst AC, Grams TEE, Ratajczak R (2004) Effects of salinity, high irradiance, ozone, and ethylene on mode of photosynthesis, oxidative stress and oxidative damage in the C3/CAM intermediate plant Mesembryanthemum crystallinum L. Plant Cell Env 27:187–197CrossRefGoogle Scholar
  29. Imai R, Koike M, Sutoh K, Kawakami A, Torada A, Oono K (2005) Molecular characterization of a cold-induced plasma membrane protein gene from wheat. Mol Genet Genomics 274:445–453CrossRefPubMedGoogle Scholar
  30. Inada M, Ueda A, Shi WM, Takabe T (2005) A stress-inducible plasma membrane protein 3 (AcPMP3) in a monocotyledonous halophyte, Aneurolepidium chinense, regulates cellular Na+ and K+ accumulation under salt stress. Planta 220:395–402CrossRefPubMedGoogle Scholar
  31. Inan G, Zhang Q, Li PH, Wang ZL, Cao ZY, Zhang H, Zhang CQ, Quist TM, Goodwin SM, Zhu JH, Shi HH, Damsz B, Charbaji T, Gong QQ, Ma SS, Fredricksen M, Galbraith DW, Jenks MA, Rhodes D, Hasegawa PM, Bohnert HJ, Joly RJ, Bressan RA, Zhu JK (2004) Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol 135:1718–1737CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106CrossRefPubMedGoogle Scholar
  33. Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291CrossRefPubMedGoogle Scholar
  34. Kim SH, Kim JY, Kim SJ, An KS, An G, Kim SR (2007) Isolation of cold stress-responsive genes in the reproductive organs, and characterization of the OsLti6b gene from rice (Oryza sativa L.) Plant Cell Rep 26:1097–1110CrossRefPubMedGoogle Scholar
  35. Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580CrossRefPubMedGoogle Scholar
  36. Lan WZ, Wang W, Wang SM, Li LG, Buchanan BB, Lin HX, Gao JP, Luan S (2010) A rice high-affinity potassium transporter (HKT) conceals a calcium-permeable cation channel. Proc Natl Acad Sci U S A 107:7089–7094CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lauchli A, Schubert S (1989) The role of calcium in the regulation of membrane and cellular growth processes under salt stress. In: Cherry JH (ed) Environmental stress in plants. Springer, pp 131–138Google Scholar
  38. Laurie S, Feeney KA, Maathuis FJM, Heard PJ, Brown SJ, Leigh RA (2002) A role for HKT1 in sodium uptake by wheat roots. Plant J 32:139–149CrossRefPubMedGoogle Scholar
  39. Lin XY, Kaul SS, Rounsley S, Shea TP, Benito MI, Town CD, Fujii CY, Mason T, Bowman CL, Barnstead M, Feldblyum TV, Buell CR, Ketchum KA, Lee J, Ronning CM, Koo HL, Moffat KS, Cronin LA, Shen M, Pai G, Van Aken S, Umayam L, Tallon LJ, Gill JE, Adams MD, Carrera AJ, Creasy TH, Goodman HM, Somerville CR, Copenhaver GP, Preuss D, Nierman WC, White O, Eisen JA, Salzberg SL, Fraser CM, Venter JC (1999) Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402:761–768CrossRefPubMedGoogle Scholar
  40. Liu B, Feng D, Zhang B, Mu P, Zhang Y, He Y, Qi K, Wang J, Wang H (2012) Musa paradisiaca RCI complements AtRCI and confers Na+ tolerance and K+ sensitivity in Arabidopsis. Plant Sci 184:102–111CrossRefPubMedGoogle Scholar
  41. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406CrossRefPubMedPubMedCentralGoogle Scholar
  42. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  43. Long RC, Zhang F, Li ZY, Li MN, Cong LL, Kang JM, Zhang TJ, Zhao ZX, Sun Y, Yang QC (2015) Isolation and functional characterization of salt-stress induced RCI2-like genes from Medicago sativa and Medicago truncatula. J Plant Res 128:697–707CrossRefPubMedGoogle Scholar
  44. Medina J, Ballesteros ML, Salinas J (2007) Phylogenetic and functional analysis of Arabidopsis RCI2 genes. J Exp Bot 58:4333–4346CrossRefPubMedGoogle Scholar
  45. Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49:69–76CrossRefGoogle Scholar
  46. Morsy MR, Almutairi AM, Gibbons J, Yun SJ, de los Reyes BG (2005) The OsLti6 genes encoding low-molecular-weight membrane proteins are differentially expressed in rice cultivars with contrasting sensitivity to low temperature. Gene 344:171–180CrossRefPubMedGoogle Scholar
  47. Navarre C, Goffeau A (2000) Membrane hyperpolarization and salt sensitivity induced by deletion of PMP3, a highly conserved small protein of yeast plasma membrane. EMBO J 19:2515–2524CrossRefPubMedPubMedCentralGoogle Scholar
  48. Nylander M, Heino P, Helenius E, Palva ET, Ronne H, Welin BV (2001) The low-temperature- and salt-induced RCI2A gene of Arabidopsis complements the sodium sensitivity caused by a deletion of the homologous yeast gene SNA1. Plant Mol Biol 45:341–352CrossRefPubMedGoogle Scholar
  49. Osakabe Y, Watanabe T, Sugano SS, Ueta R, Ishihara R, Shinozaki K, Osakabe K (2016) Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants. Sci Rep 6(26685)Google Scholar
  50. Rocha PSCF (2016) Plant abiotic stress-related RCI2/PMP3s: multigenes for multiple roles. Planta 243:1–12CrossRefPubMedGoogle Scholar
  51. Rus A, Yokoi S, Sharkhuu A, Reddy M, Lee BH, Matsumoto TK, Koiwa H, Zhu JK, Bressan RA, Hasegawa PM (2001) AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proc Natl Acad Sci U S A 98:14150–14155CrossRefPubMedPubMedCentralGoogle Scholar
  52. Sairam R, Srivastava G, Agarwal S, Meena R (2005) Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biol Plant 49:85–91CrossRefGoogle Scholar
  53. Shi H, Zhu J-K (2002) Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid. Plant Mol Biol 50:543–550CrossRefPubMedGoogle Scholar
  54. Sokal RR, Rohlf FJ (1969) The principles and practice of statistics in biological research. WH Freeman and Company San FranciscoGoogle Scholar
  55. Su H, Balderas E, Vera-Estrella R, Golldack D, Quigley F, Zhao CS, Pantoja O, Bohnert JH (2003) Expression of the cation transporter McHKT1 in a halophyte. Plant Mol Biol 52:967–980CrossRefPubMedGoogle Scholar
  56. Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135:1697–1709CrossRefPubMedPubMedCentralGoogle Scholar
  57. Takahashi H, Chen ZX, Du H, Liu YD, Klessig DF (1997) Development of necrosis and activation of disease resistance in transgenic tobacco plants with severely reduced catalase levels. Plant J 11:993–1005CrossRefPubMedGoogle Scholar
  58. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729Google Scholar
  59. Tuteja N (2007) Abscisic acid and abiotic stress signaling. Plant Signal Behav 2:135–138CrossRefPubMedPubMedCentralGoogle Scholar
  60. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3-new capabilities and interfaces. Nucleic Acids Res 40:e115CrossRefPubMedPubMedCentralGoogle Scholar
  61. Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132CrossRefPubMedGoogle Scholar
  62. Wang D, Chen Y, Wang Y, Wang Z (2013) Molecular cloning and expression of two plasma membrane. Protein 3 (SmPMP3) genes from Salvia miltiorrhiza. Russian J Plant Physiol 60:155–164CrossRefGoogle Scholar
  63. Wang WX, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14CrossRefPubMedGoogle Scholar
  64. Weigel D, Glazebrook J (2006) Transformation of agrobacterium using electroporation. CSH Protoc 2006Google Scholar
  65. Yamamoto N, Takano T, Tanaka K, Ishige T, Terashima S, Endo C, Kurusu T, Yajima S, Yano K, Tada Y (2015) Comprehensive analysis of transcriptome response to salinity stress in the halophytic turf grass Sporobolus virginicus. Front Plant Sci 241Google Scholar
  66. Zhao Y, Tong HQ, Cai RH, Peng XJ, Li XY, Gan DF, Zhu SW (2014) Identification and characterization of the RCI2 gene family in maize (Zea mays). J Genet 93:655–666CrossRefPubMedGoogle Scholar
  67. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273CrossRefPubMedPubMedCentralGoogle Scholar
  68. Zouari N, Ben Saad R, Legavre T, Azaza J, Sabau X, Jaoua M, Masmoudi K, Hassairi A (2007) Identification and sequencing of ESTs from the halophyte grass Aeluropus littoralis. Gene 404:61–69CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Plant Production Department, College of Food and Agricultural SciencesKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Biotechnology and Plant Improvement LaboratoryCentre of Biotechnology of Sfax, University of SfaxSfaxTunisia
  3. 3.CIRAD-UMR AGAP (Centre de coopération Internationale en Recherche Agronomique pour le Développement)Avenue AgropolisMontpellier Cedex 5France
  4. 4.Laboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Sciences of SfaxUniversity of SfaxSfaxTunisia

Personalised recommendations