, Volume 255, Issue 4, pp 1015–1022 | Cite as

High-resolution suborganellar localization of Ca2+-binding protein CAS, a novel regulator of CO2-concentrating mechanism

  • Takashi Yamano
  • Chihana Toyokawa
  • Hideya FukuzawaEmail author
Original Article


Many aquatic algae induce a CO2-concentrating mechanism (CCM) associated with active inorganic carbon transport to maintain high photosynthetic affinity using dissolved inorganic carbon even in low-CO2 (LC) conditions. In the green alga Chlamydomonas reinhardtii, a Ca2+-binding protein CAS was identified as a novel factor regulating the expression of CCM-related proteins including bicarbonate transporters. Although previous studies revealed that CAS associates with the thylakoid membrane and changes its localization in response to CO2 and light availability, its detailed localization in the chloroplast has not been examined in vivo. In this study, high-resolution fluorescence images of CAS fused with a Chlamydomonas-adapted fluorescence protein, Clover, were obtained by using a sensitive hybrid detector and an image deconvolution method. In high-CO2 (5% v/v) conditions, the fluorescence signals of Clover displayed a mesh-like structure in the chloroplast and part of the signals discontinuously overlapped with chlorophyll autofluorescence. The fluorescence signals gathered inside the pyrenoid as a distinct wheel-like structure at 2 h after transfer to LC-light condition, and then localized to the center of the pyrenoid at 12 h. These results suggest that CAS could move in the chloroplast along the thylakoid membrane in response to lowering CO2 and gather inside the pyrenoid during the operation of the CCM.


Bicarbonate transporter Ca2+-binding protein Chlamydomonas CO2-concentrating mechanism Pyrenoid 



This work was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grants 16H04805 (to H.F.) and 16K07399 (to T.Y.) and the Japan Science and Technology Agency Advanced Low Carbon Technology Research and Development Program (to H.F.).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Blanco-Rivero A, Shutova T, Roman MJ, Villarejo A, Martinez F (2012) Phosphorylation controls the localization and activation of the luminal carbonic anhydrase in Chlamydomonas reinhardtii. PLoS One 7(11):e49063. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Duanmu D, Miller AR, Horken KM, Weeks DP, Spalding MH (2009) Knockdown of limiting-CO2-induced gene HLA3 decreases HCO3 transport and photosynthetic Ci affinity in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 106(14):5990–5995. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Engel BD, Schaffer M, Cuellar LK, Villa E, Plitzko JM, Baumeister W (2015) Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography. elife 4:e04889. PubMedPubMedCentralCrossRefGoogle Scholar
  4. Fukuzawa H, Miura K, Ishizaki K, Kucho K, Saito T, Kohinata T, Ohyama K (2001) Ccm1, a regulatory gene controlling the induction of a carbon-concentrating mechanism in Chlamydomonas reinhardtii by sensing CO2 availability. Proc Natl Acad Sci U S A 98(9):5347–5352. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Fukuzawa, H, Ogawa T, Kaplan A (2012) The uptake of CO2 by cyanobacteria and microalgae. In: Eaton-Rye JJ, Tripathy BC, Sharkey TD (eds) Photosynthesis “plastid biology, energy conversion and carbon assimilation.” Springer, Advances in Photosynthesis and Respiration 34:625–650Google Scholar
  6. Gao H, Wang Y, Fei X, Wright DA, Spalding MH (2015) Expression activation and functional analysis of HLA3, a putative inorganic carbon transporter in Chlamydomonas reinhardtii. Plant J 82(1):1–11. CrossRefPubMedGoogle Scholar
  7. Han S, Tang R, Anderson LK, Woerner TE, Pei ZM (2003) A cell surface receptor mediates extracellular Ca2+ sensing in guard cells. Nature 425(6954):196–200. CrossRefPubMedGoogle Scholar
  8. Im CS, Grossman AR (2002) Identification and regulation of high light-induced genes in Chlamydomonas reinhardtii. Plant J 30(3):301–313. CrossRefPubMedGoogle Scholar
  9. Iwai M, Yokono M, Nakano A (2014) Visualizing structural dynamics of thylakoid membranes. Sci Rep 4(1):3768. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Jones HG (1992) Plants and microclimate: a quantitative approach to environmental plant physiology, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  11. Karlsson J, Clarke AK, Chen ZY, Hugghins SY, Park YI, Husic HD, Moroney JV, Samuelsson G (1998) A novel alpha-type carbonic anhydrase associated with the thylakoid membrane in Chlamydomonas reinhardtii is required for growth at ambient CO2. EMBO J 17(5):1208–1216. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Lauersen KJ, Kruse O, Mussgnug JH (2015) Targeted expression of nuclear transgenes in Chlamydomonas reinhardtii with a versatile, modular vector toolkit. Appl Microbiol Biotechnol 99(8):3491–3503. CrossRefPubMedGoogle Scholar
  13. Mackinder LCM, Meyer M, Mettler-Altmann T et al (2016) A repeat protein links Rubisco to form the eukaryotic carbon-concentrating organelle. Proc Natl Acad Sci U S A 113(21):5958–5963. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Mariscal V, Moulin P, Orsel M, Miller AJ, Fernandez E, Galvan A (2006) Differential regulation of the Chlamydomonas Nar1 gene family by carbon and nitrogen. Protist 157(4):421–433. CrossRefPubMedGoogle Scholar
  15. Meyer MT, McCormick AJ, Griffiths H (2016) Will an algal CO2-concentrating mechanism work in higher plants? Curr Opin Plant Biol 31:181–188. CrossRefPubMedGoogle Scholar
  16. Meyer MT, Whittaker C, Griffiths H (2017) The algal pyrenoid: key unanswered questions. J Exp Bot 68(14):3739–3749. CrossRefPubMedGoogle Scholar
  17. Mitchell MC, Metodieva G, Metodiev MV, Griffiths H, Meyer MT (2017) Pyrenoid loss impairs carbon-concentrating mechanism induction and alters primary metabolism in Chlamydomonas reinhardtii. J Exp Bot 68(14):3891–3902. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Miura K, Yamano T, Yoshioka S, Kohinata T, Inoue Y, Taniguchi F, Asamizu E, Nakamura Y, Tabata S, Yamato KT, Ohyama K, Fukuzawa H (2004) Expression profiling-based identification of CO2-responsive genes regulated by CCM1 controlling a carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Physiol 135(3):1595–1607. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Motohashi K (2015) A simple and efficient seamless DNA cloning method using SLiCE from Escherichia coli laboratory strains and its application to SLiP site-directed mutagenesis. BMC Biotechnol 15(1):47. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Nomura H, Komori T, Kobori M, Nakahira Y, Shiina T (2008) Evidence for chloroplast control of external Ca2+-induced cytosolic Ca2+ transients and stomata closure. Plant J 53(6):988–998. CrossRefPubMedGoogle Scholar
  21. Nomura H, Komori T, Uemura S, Kanda Y, Shimotani K, Nakai K, Furuichi T, Takebayashi K, Sugimoto T, Sano S, Suwastika IN, Fukusaki E, Yoshioka H, Nakahira Y, Shiina T (2012) Chloroplast-mediated activation of plant immune signaling in Arabidopsis. Nat Commun 3:926. CrossRefPubMedGoogle Scholar
  22. Ohad I, Siekevitz P, Palade GE (1967) Biogenesis of chloroplast membranes. I. Plastid dedifferentiation in a dark-grown algal mutant (Chlamydomonas reinhardtii). J Cell Biol 35(3):521–552. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Skinner SO, Sepúlveda LA, Xu H, Golding I (2013) Measuring mRNA copy number in individual Escherichia coli cells using single-molecule fluorescent in situ hybridization. Nat Protoc 8(6):1100–1113. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Trippens J, Reißenweber T, Kreimer G (2017) The chloroplast calcium sensor protein CAS affects phototactic behaviour in Chlamydomonas reinhardtii (Chlorophyceae) at low light intensities. Phycologia 56(3):261–270. CrossRefGoogle Scholar
  25. Turkina MV, Blanco-Rivero A, Vainonen JP, Vener AV, Villarejo A (2006) CO2 limitation induces specific redox-dependent protein phosphorylation in Chlamydomonas reinhardtii. Proteomics 6(9):2693–2704. CrossRefPubMedGoogle Scholar
  26. Uniacke J, Zerges W (2007) Photosystem II assembly and repair are differentially localized in Chlamydomonas. Plant Cell 19(11):3640–3654. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Vainonen JP, Sakuragi Y, Stael S, Tikkanen M, Allahverdiyeva Y, Paakkarinen V, Aro E, Suorsa M, Scheller HV, Vener AV, Aro EM (2008) Light regulation of CaS, a novel phosphoprotein in the thylakoid membrane of Arabidopsis thaliana. FEBS J 275(8):1767–1777. CrossRefPubMedGoogle Scholar
  28. Wang Y, Spalding MH (2014) Acclimation to very low CO2: contribution of limiting CO2 inducible proteins, LCIB and LCIA, to inorganic carbon uptake in Chlamydomonas reinhardtii. Plant Physiol 166(4):2040–2050. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Wang Y, Huang Y, Wang J, Cheng C, Huang W, Lu P, Xu YN, Wang P, Yan N, Shi Y (2009) Structure of the formate transporter FocA reveals a pentameric aquaporin-like channel. Nature 462(7272):467–472. CrossRefPubMedGoogle Scholar
  30. Wang L, Yamano T, Kajikawa M, Hirono M, Fukuzawa H (2014) Isolation and characterization of novel high-CO2-requiring mutants of Chlamydomonas reinhardtii. Photosynth Res 121(2-3):175–184. CrossRefPubMedGoogle Scholar
  31. Wang Y, Stessman DJ, Spalding MH (2015) The CO2 concentrating mechanism and photosynthetic carbon assimilation in limiting CO2: how Chlamydomonas works against the gradient. Plant J 82(3):429–448. CrossRefPubMedGoogle Scholar
  32. Wang L, Yamano T, Takane S, Niikawa Y, Toyokawa C, Ozawa Si, Tokutsu R, Takahashi Y, Minagawa J, Kanesaki Y, Yoshikawa H, Fukuzawa H (2016) Chloroplast-mediated regulation of CO2-concentrating mechanism by Ca2+-binding protein CAS in the green alga Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 113(44):12586–12591. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Xiang Y, Zhang J, Weeks DP (2001) The Cia5 gene controls formation of the carbon concentrating mechanism in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 98(9):5341–5346. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Yamano T, Miura K, Fukuzawa H (2008) Expression analysis of genes associated with the induction of the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Physiol 147(1):340–354. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Yamano T, Tsujikawa T, Hatano K, Ozawa S, Takahashi Y, Fukuzawa H (2010) Light and low-CO2-dependent LCIB-LCIC complex localization in the chloroplast supports the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Cell Physiol 51(9):1453–1468. CrossRefPubMedGoogle Scholar
  36. Yamano T, Iguchi H, Fukuzawa H (2013) Rapid transformation of Chlamydomonas reinhardtii without cell-wall removal. J Biosci Bioeng 115(6):691–694. CrossRefPubMedGoogle Scholar
  37. Yamano T, Asada A, Sato E, Fukuzawa H (2014) Isolation and characterization of mutants defective in the localization of LCIB, an essential factor for the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Photosynth Res 121(2-3):193–200. CrossRefPubMedGoogle Scholar
  38. Yamano T, Sato E, Iguchi H, Fukuda Y, Fukuzawa H (2015) Characterization of the cooperative bicarbonate uptake into chloroplast stroma in the green alga Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 112(23):7315–7320. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Takashi Yamano
    • 1
  • Chihana Toyokawa
    • 1
  • Hideya Fukuzawa
    • 1
    Email author
  1. 1.Graduate School of BiostudiesKyoto UniversityKyotoJapan

Personalised recommendations