, Volume 255, Issue 2, pp 655–667 | Cite as

Regenerative potential, metabolic profile, and genetic stability of Brachypodium distachyon embryogenic calli as affected by successive subcultures

  • T. C. Mamedes-Rodrigues
  • D. S. Batista
  • N. M. Vieira
  • E. M. Matos
  • D. Fernandes
  • A. Nunes-Nesi
  • C. D. Cruz
  • L. F. Viccini
  • F. T. S. Nogueira
  • W. C. OtoniEmail author
Original Article


Brachypodium distachyon, a model species for forage grasses and cereal crops, has been used in studies seeking improved biomass production and increased crop yield for biofuel production purposes. Somatic embryogenesis (SE) is the morphogenetic pathway that supports in vitro regeneration of such species. However, there are gaps in terms of studies on the metabolic profile and genetic stability along successive subcultures. The physiological variables and the metabolic profile of embryogenic callus (EC) and embryogenic structures (ES) from successive subcultures (30, 60, 90, 120, 150, 180, 210, 240, and 360-day-old subcultures) were analyzed. Canonical discriminant analysis separated EC into three groups: 60, 90, and 120 to 240 days. EC with 60 and 90 days showed the highest regenerative potential. EC grown for 90 days and submitted to SE induction in 2 mg L−1 of kinetin-supplemented medium was the highest ES producer. The metabolite profiles of non-embryogenic callus (NEC), EC, and ES submitted to principal component analysis (PCA) separated into two groups: 30 to 240- and 360-day-old calli. The most abundant metabolites for these groups were malonic acid, tryptophan, asparagine, and erythrose. PCA of ES also separated ages into groups and ranked 60- and 90-day-old calli as the best for use due to their high levels of various metabolites. The key metabolites that distinguished the ES groups were galactinol, oxaloacetate, tryptophan, and valine. In addition, significant secondary metabolites (e.g., caffeoylquinic, cinnamic, and ferulic acids) were important in the EC phase. Ferulic, cinnamic, and phenylacetic acids marked the decreases in the regenerative capacity of ES in B. distachyon. Decreased accumulations of the amino acids aspartic acid, asparagine, tryptophan, and glycine characterized NEC, suggesting that these metabolites are indispensable for the embryogenic competence in B. distachyon. The genetic stability of the regenerated plants was evaluated by flow cytometry, showing that ploidy instability in regenerated plants from B. distachyon calli is not correlated with callus age. Taken together, our data indicated that the loss of regenerative capacity in B. distachyon EC occurs after 120 days of subcultures, demonstrating that the use of EC can be extended to 90 days.


Flow cytometry Metabolomics Ploidy Somatic embryogenesis 



The authors are grateful to the Núcleo de Análise de Biomoléculas of the Universidade Federal de Viçosa for providing the facilities for the metabolite analysis. Caio G. Otoni and Ross Thomas are also acknowledged for the English revision.

Authors’ contributions

T.C.M.-R. and E.M.M. raised the in vitro plants for the experiments and performed the experiments; T.C.M.R., N.M.V., D.F., and A.N.N. performed metabolite profiling analyses. C.D.C., D.S.B., and T.C.M-R. performed statistical analysis. E.M.M and L.F.V. performed flow cytometric analysis. T.C.M.-R., D.S.B., C.D.C., F.T.S.N., L.F.V., and W.C.O. contributed to the design and interpretation of the research and to the writing of the paper.

Funding information

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Brasília, DF, Brazil) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) (Belo Horizonte, MG, Brazil). T.C.M.-R. was recipient of a scholarship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (Brasília, DF, Brazil).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

Supplementary material

709_2017_1177_MOESM1_ESM.docx (41 kb)
Supplementary Material 1 (DOCX 41 kb)
709_2017_1177_MOESM2_ESM.docx (36 kb)
Supplementary Material 2 (DOCX 36 kb)


  1. Abbasi BH, Ali H, Yücesan B, Saeed S, Rehman K, Khan MA (2016) Evaluation of biochemical markers during somatic embryogenesis in Silybum marianum L. 3. Biotech 6:1–8. Google Scholar
  2. Abreu IS, Carvalho CR, Clarindo WR (2008) Chromosomal DNA content of sweet pepper determined by association of cytogenetic and cytometric tools. Plant Cell Rep 27:1227–1233. CrossRefPubMedGoogle Scholar
  3. Alves SC, Worland B, Thole V, Snape JW, Bevan MW, Vain P (2009) A protocol for Agrobacterium-mediated transformation of Brachypodium distachyon community standard line Bd21. Nat Protoc 4:638–649. CrossRefPubMedGoogle Scholar
  4. Azevedo RA, Lancien M, Lea PJ (2006) The aspartic acid metabolic pathway, an exciting and essential pathway in plants. Amino Acids 30:143–162. CrossRefPubMedGoogle Scholar
  5. Bablak P, Draper J, Davey MR, Lynch PT (1995) Plant regeneration and micropropagation of Brachypodium distachyon. Plant Cell Tissue Organ Cult 42:97–107. CrossRefGoogle Scholar
  6. Ban Y, Kobayashi Y, Hara T, Hamada T, Hashimoto T, Takeda S, Hattori T (2013) α-tubulin is rapidly phosphorylated in response to hyperosmotic stress in rice and Arabidopsis. Plant Cell Physiol 54:848–858CrossRefPubMedGoogle Scholar
  7. Betekhtin A, Rojek M, Milewska-Hendel A, Gawecki R, Karcz J, Kurczynska E, Hasterok R (2016) Spatial distribution of selected chemical cell wall components in the embryogenic callus of Brachypodium distachyon. PLoS One 11:1–20. CrossRefGoogle Scholar
  8. Borisjuk L, Neuberger T, Schwender J, Heinzel N, Sunderhaus S, Fuchs J, Hay JO, Tschiersch H, Braun HP, Denolf P, Lambert B, Jakob PM, Rolletschek H (2013) Seed architecture shapes embryo metabolism in oilseed rape. Plant Cell 25:1625–1640. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bragg JN, Anderton A, Nieu R, Vogel JP (2015) Brachypodium distachyon. In: Wang K (ed) Agrobacterium protocols, 3rd edn. Springer, New York, pp 17–33Google Scholar
  10. Capron A, Chatfield S, Provart N, Berleth T (2009) Embryogenesis: pattern formation from a single cell (ed) Arabidopsis Book. American Society of Plant Biologists, Rockville, pp 1–28Google Scholar
  11. Chen H, Kim HU, Weng H, Browse J (2011) Malonyl-CoA synthetase, encoded by ACYL ACTIVATING ENZYME13, is essential for growth and development of Arabidopsis. Plant Cell 23:2247–2262. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chen CC, SF F, Lee YI, Lin CY, Lin WC, Huang HJ (2012) Transcriptome analysis of age-related gain of callus-forming capacity in Arabidopsis hypocotyls. Plant Cell Physiol 53:1457–1469. CrossRefPubMedGoogle Scholar
  13. Corredoira E, Toribio M, Vieitez AM (2014) Clonal propagation via somatic embryogenesis in Quercus spp. In: Ramawat KG, Mérillon J-M, Ahuja MR (eds) Tree biotechnology. CRC Press, Boca Raton, pp 264–302. Google Scholar
  14. Cruz CD (2013) GENES—a software package for analysis in experimental statistics and quantitative genetics. Acta Sci 35:271–276. Google Scholar
  15. Cuadros-Inostroza A, Caldana C, Redestig H, Kusano M, Lisec J, Penã-Cortés H, Willmitzer L, Hannah MA (2009) Target search a bioconductor package for the efficient preprocessing of GC-MS metabolite profiling data. BMC Bioinforma 10:1–12. CrossRefGoogle Scholar
  16. Currais L, Loureiro J, Santos C, Canhoto JM (2013) Ploidy stability in embryogenic cultures and regenerated plantlets of tamarillo. Plant Cell Tissue Organ Cult 114:149–159. CrossRefGoogle Scholar
  17. De Verno LL (1995) An evaluation of somaclonal variation during somatic embryogenesis. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, 1st edn. Kluwer Academic Publishers, Dordrecht, pp 361–377Google Scholar
  18. De-La-Peña C, Nic-Can GI, Galaz-Ávalos RM, Avilez-Montalvo R, Loyola-Vargas VM (2015) The role of chromatin modifications in somatic embryogenesis in plants. Front Plant Sci 6:1–15. CrossRefGoogle Scholar
  19. Domžalska L, Kędracka-Krok S, Jankowska U, Grzyb M, Sobczak M, Rybczyński JJ, Mikuła A (2017) Proteomic analysis of Cyathea delgadii Sternb. Stipe explants reveals differentially expressed proteins involved in fern somatic embryogenesis. Plant Sci 258:61–76. CrossRefPubMedGoogle Scholar
  20. Draper J, Mur LA, Jenkins G, Ghosh-Biswas GC, Bablak P, Hasterok R, Routledge AP (2001) Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol 127:1539–1555. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Endemann M, Hristoforoglu K, Stauber T, Wilhelm E (2001) Assessment of age-related polyploidy in Quercus robur L. somatic embryos and regenerated plants using DNA flow cytometry. Biol Plant 44:339–345CrossRefGoogle Scholar
  22. Fehér A (2015) Somatic embryogenesis stress induced remodeling of plant cell fate. BBA Gene Regul Mech 1849:385–402. Google Scholar
  23. Filiz E, Ozdemir BS, Budak F, Vogel JP, Tuna M, Budak H (2009) Molecular, morphological, and cytological analysis of diverse Brachypodium distachyon inbred lines. Genome 52:876–890. CrossRefPubMedGoogle Scholar
  24. Florez SL, Erwin RL, Maximova SN, Guiltinan MJ, Curtis WR (2015) Enhanced somatic embryogenesis in Theobroma cacao using the homologous BABY BOOM transcription factor. BMC Plant Biol 15:121. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Fras A, Maluszynska J (2004) The correlation between the chromosome variation in callus and genotype of explants of Arabidopsis thaliana. Genetica 121:145–154. CrossRefPubMedGoogle Scholar
  26. Gallardo C, Jiménez L, García-Conesa MT (2006) Hydroxycinnamic acid composition and in vitro antioxidant activity of selected grain fractions. Food Chem 99:455–463. CrossRefGoogle Scholar
  27. Gao Y, Zhao Y (2014) Auxin biosynthesis and catabolism. In: Zažímalová E, Petrasek J, Benková E (eds) Auxin and its role in plant development. Springer, Vienna, pp 21–38CrossRefGoogle Scholar
  28. Ge X, Zhang C, Wang Q, Yang Z, Wang Y, Zhang X, WuZ HY, Wu J, Li F (2015) iTRAQ Protein profile differential analysis between somatic globular and cotyledonary embryos reveals stress, hormone, and respiration involved in increasing plantlet regeneration of Gossypium hirsutum L. J Proteome Res 14:268–278. CrossRefPubMedGoogle Scholar
  29. Ge F, Hu H, Huang X, Zhang Y, Wang Y, Li Z, Zou C, Peng H, Li L, Gao S, Pan G, Shen Y (2017) Metabolomic and proteomic analysis of maize embryonic callus induced from immature embryo. Sci Rep 7:1–16. CrossRefGoogle Scholar
  30. Hansen G, Wright MS (1999) Recent advances in transformation of plants. Trends Plant Sci 4:226–231. CrossRefPubMedGoogle Scholar
  31. Hashimoto T (2015) Microtubules in plants. Arabidopsis Book 13:e0179.  https//
  32. Heringer AS, Barroso T, Macedo AF, Santa-Catarina C, Souza GHMF, Floh EIS (2015) Label-free quantitative proteomics of embryogenic and non-embryogenic callus during sugarcane somatic embryogenesis. PLoS One 10:1–23. CrossRefGoogle Scholar
  33. Hirano K, Kondo M, Aya K, Miyao A, Sato Y, Antonio BA, Matsuoka M (2013) Identification of transcription factors involved in rice secondary cell wall formation. Plant Cell Physiol 54:1791–1802. CrossRefPubMedGoogle Scholar
  34. Igamberdiev AU, Eprintsev AT (2016) Organic acids: the pools of fixed carbon involved in redox regulation and energy balance in higher plants. Front Plant Sci 7:1–15. CrossRefGoogle Scholar
  35. Igamberdiev AU, Bykova NV, Lea PJ, Gardeström P (2001) The role of photorespiration in redox and energy balance of photosynthetic plant cells: a study with a barley mutant deficient in glycine decarboxylase. Physiol Plant 111:427–438. CrossRefPubMedGoogle Scholar
  36. International Brachypodium Initiative (IBI) (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768. CrossRefGoogle Scholar
  37. Jaikumar NS, Snapp SS, Sharkey TD (2016) Older Thinopyrum intermedium (Poaceae) plants exhibit superior photosynthetic tolerance to cold stress and greater increases in two photosynthetic enzymes under freezing stress compared with young plants. J Exp Bot 67:4743–4753. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Karp A (1994) Origins, causes and uses of variation in plant tissue cultures. In: Vasil IK, Thorpe TA (eds) Plant cell tissue culture. Kluwer, Dordrecht, pp 139–151Google Scholar
  39. Kellogg EA (2015) Description of the family, vegetative morphology and anatomy. In: Kellogg EA (ed) The families and genera of vascular plants: flowering plants. Monocots, Poaceae. Springer, New York, pp 3–23Google Scholar
  40. Khan MA, Abbasi BH, Ali H, Ali M, Adil M, Hussain I (2015) Temporal variations in metabolite profiles at different growth phases during somatic embryogenesis of Silybum marianum L. Plant Cell Tissue Organ Cult 120:127–139. CrossRefGoogle Scholar
  41. Klimaszewska K, Noceda C, Pelletier G, Label P, Rodriguez R, Lelu-Walter MA (2008) Biological characterization of young and aged embryogenic cultures of Pinus pinaster (Ait.) In Vitro Cell Dev Biol Plant 45:1–14. Google Scholar
  42. Komamine A, Shimizu T, Ashihara H, Shimokoriyama M (1972) The mechanism of changes in respiratory activity during callus formation in carrot root slices cultured in vitro. Plant Cell Physiol 13:821–829CrossRefGoogle Scholar
  43. Kus JV, Zaton K, Sarkar R, Cameron RK (2002) Age-related resistance in Arabidopsis is a developmentally regulated defense response to Pseudomonas syringae. Plant Cell 14:479–490. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lee MB, Jeon WB, Kim DY, Bold O, Hong MJ, Lee YJ, Park JH, Seo YW (2011) Agrobacterium-mediated transformation of Brachypodium distachyon inbred line Bd21 with two binary vectors containing hygromycin resistance and GUS reporter genes. Crop Sci Biotechnol 14:233–238. CrossRefGoogle Scholar
  45. Lema-Rumińska J, Śliwińska E (2015) Evaluation of the genetic stability of plants obtained via somatic embryogenesis in Chrysanthemum × grandiflorum. Acta Sci Pol. Hortorum 14:131–139Google Scholar
  46. Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc 1:387–396. CrossRefPubMedGoogle Scholar
  47. Loyola-Vargas VM, Ochoa-Alejo N (2016) Somatic embryogenesis. In: Loyola-Vargas VM, Ochoa-Alejo N (eds) Somatic embryogenesis: fundamental aspects and applications. Springer, New York, pp 1–10. CrossRefGoogle Scholar
  48. Lysák MA, Doležel J (1998) Estimation of nuclear DNA content in Sesleria (Poaceae). Caryologia 52:123–132. CrossRefGoogle Scholar
  49. Magnaval C, Noirot M, Verdeil JL, Blattes A, Huet C, Grosdemange F, Buffard-Mo J (1995) Free amino acid composition of coconut (Cocos nucifera L.) calli under somatic embryogenesis induction conditions. J Plant Physiol 146:155–161. CrossRefGoogle Scholar
  50. Maurino VG, Engqvist MK (2015) 2-Hydroxy acids in plant metabolism. Arabidopsis Book 13:1–31. CrossRefGoogle Scholar
  51. Mishiba K, Okamoto T, Mii M (2011) Increasing ploidy level in cell suspension cultures of Doritaenopsis by exogenous application of 2,4-dichlorophenoxyacetic acid. Physiol Plant 112:142–148. CrossRefGoogle Scholar
  52. Mur LA, Allainguillaume J, Catalán P, Hasterok R, Jenkins G, Lesniewska K, Thomas I, Vogel J (2011) Exploiting the Brachypodium tool box in cereal and grass research. New Phytol 191:334–347. CrossRefPubMedGoogle Scholar
  53. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  54. Nadwodnik J, Lohaus G (2008) Subcellular concentrations of sugar alcohols and sugars in relation to phloem translocation in Plantago major, Plantago maritima, Prunus persica, and Apium graveolens. Planta 227:1079–1089. CrossRefPubMedPubMedCentralGoogle Scholar
  55. Nascimento-Gavioli MCA, Cangahuala-Inocente GC, Steinmacher D, Ree JF, Steiner N, Guerra MP (2017) Physiological and biochemical features of embryogenic and non-embryogenic peach palm (Bactris gasipaes Kunth) cultures. In Vitro Cell Dev Biol Plant (1):1–8.
  56. Ncube EN, Steenkamp PA, Madala NE, Dubery IA (2017) Metabolite profiling of the undifferentiated cultured cells and differentiated leaf tissues of Centella asiatica. Plant Cell Tissue Organ Cult 129:431–443. CrossRefGoogle Scholar
  57. Ng TLM, Karim R, Tan YS, Teh HF, Danial AD, Ho LS (2016) Amino acid and secondary metabolite production in embryogenic and nonembryogenic callus of fingerroot ginger (Boesenbergia rotunda). PLoS One 11:1–19. Google Scholar
  58. Niemenak N, Kaiser E, Maximova SN, Laremore T, Guiltinan MJ (2015) Proteome analysis during pod, zygotic and somatic embryo maturation of Theobroma cacao. J Plant Physiol 180:49–60. CrossRefPubMedGoogle Scholar
  59. Nishizawa A, Yabuta Y, Shigeoka S (2008) Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol 147:1251–1263. CrossRefPubMedPubMedCentralGoogle Scholar
  60. Nontaswatsri C, Fukai S (2005) Regenerative callus of Dianthus ‘Telstar Scarlet’ showing mixoploidy produce diploid plants. Plant Cell Tissue Organ Cult 83:351–355. CrossRefGoogle Scholar
  61. Oliveira EJ, Koehler AD, Rocha DI, Vieira LM, Pinheiro MVM, Matos EM, Cruz ACF, Silva TCR, Tanaka FAO, Nogueira FTS, Otoni WC (2017) Morpho-histological, histochemical, and molecular evidences related to cellular reprogramming during somatic embryogenesis of the model grass Brachypodium distachyon.Protoplasma. 254:2017–2034.
  62. Otto FJ (1990) DAPI staining of fixed cells for highresolution flow cytometry of nuclear DNA. In: Darzynkiewiez Z, Crissman HA, Robinson JP (eds) Methods in cell biology. Academic, San Diego, pp 105–110Google Scholar
  63. Păcurar DI, Thordal-Christensen H, Nielsen KK, Lenk I (2008) A high-throughput Agrobacterium-mediated transformation system for the grass model species Brachypodium distachyon L. Transgenic Res 17:965–975. CrossRefPubMedGoogle Scholar
  64. Pan Z, Guan R, Zhu S, Deng X (2009) Proteomic analysis of somatic embryogenesis in Valencia sweet orange (Citrus sinensis Osbeck). Plant Cell Rep 28:281–289. CrossRefPubMedGoogle Scholar
  65. Pinto DLP, Barros BA, Viccini LF, Campos JMS, Silva ML, Otoni WC (2010) Ploidy stability of somatic embryogenesis-derived Passiflora cincinnata Mast. Plants as assessed by flow cytometry. Plant Cell Tissue Organ Cult 103:71–79. CrossRefGoogle Scholar
  66. Pratelli R, Pilot G (2014) Regulation of amino acid metabolic enzymes and transporters in plants. J Exp Bot 65:5535–5556. CrossRefPubMedGoogle Scholar
  67. Rancour DM, Hatfield RD, Marita JM, Rohr NA, Schmitz RJ (2015) Cell wall composition and digestibility alterations in Brachypodium distachyon achieved through reduced expression of the UDP-arabinopyranose mutase. Front Plant Sci 6:1–20. CrossRefGoogle Scholar
  68. Rohlf FJ (1970) Adaptive hierarchical clustering schemes. Syst Biol 19:58–82. CrossRefGoogle Scholar
  69. San José MC, Corredoira E, Oliveira H (2015) Cryopreservation of somatic embryos of Alnus glutinosa (L.) Gaertn and confirmation of ploidy stability by flow cytometry. Plant Cell Tissue Organ Cult 123:489–499. CrossRefGoogle Scholar
  70. Sengupta S, Mukherjee S, Basak P, Majumder AL (2015) Significance of galactinol and raffinose family oligosaccharide synthesis in plants. Front Plant Sci 6:1–11. CrossRefGoogle Scholar
  71. Sharifi G, Ebrahimzadeh H, Ghareyazie B, Gharechahi J, Vatankhah E (2012) Identification of differentially accumulated proteins associated with embryogenic and non-embryogenic calli in saffron (Crocus sativus L.) Proteome Sci 10:3. CrossRefPubMedPubMedCentralGoogle Scholar
  72. Singh D (1981) The relative importance of characters affecting genetic divergence. Indian J Genet Plant Breed 41:237–245Google Scholar
  73. Siriwardana S, Nabors MW (1983) Tryptophan enhancement of somatic embryogenesis in rice. Plant Physiol 73:142–146. CrossRefPubMedPubMedCentralGoogle Scholar
  74. Szalai G, Janda T (2009) Effect of salt stress on the salicylic acid synthesis in young maize (Zea mays L.) plants. J Agron Crop Sci 195:165–171. CrossRefGoogle Scholar
  75. Trafford K, Haleux P, Henderson M, Parker M, Shirley NJ, Tucker MR, Fincher GB, Burton RA (2013) Grain development in Brachypodium and other grasses: possible interactions between cell expansion, starch deposition, and cell-wall synthesis. J Exp Bot 64:5033–5047. CrossRefPubMedGoogle Scholar
  76. Verdeil JL, Hocher V, Huet C, Grosdemange F, Escoute J, Ferriere N, Nicole M (2001) Ultrastructural changes in coconut calli associated with the acquisition of embryogenic competence. Ann Bot 88:9–18. CrossRefGoogle Scholar
  77. Verdeil JL, Alemanno L, Niemenak N, Trambarger TJ (2007) Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends Plant Sci 12:245–252. CrossRefPubMedGoogle Scholar
  78. Vogel JP (2015) The rise of Brachypodium as a model system. In: Genetics and genomics of Brachypodium. Springer, New York, pp 1–7. Google Scholar
  79. Vogel JP, Hill T (2008) High-efficiency Agrobacterium-mediated transformation of Brachypodium distachyon inbred line Bd21-3. Plant Cell Rep 27:471–478. CrossRefPubMedGoogle Scholar
  80. Vogel JP, Garvin DF, Leong OM, Hayden DM (2006) Agrobacterium-mediated transformation and inbred line development in the model grass Brachypodium distachyon. Plant Cell Tissue Organ Cult 84:199–211. CrossRefGoogle Scholar
  81. Wang B, Chu J, Yu T, Xu Q, Sun X, Yuan J, Xiong G, Wang G, Wang Y, LI J (2015) Tryptophan-independent auxin biosynthesis contributes to early embryogenesis in Arabidopsis. Proc Natl Acad Sci U S A 112:4821–4826. CrossRefPubMedPubMedCentralGoogle Scholar
  82. Wickramasuriya AM, Dunwell JM (2015) Global scale transcriptome analysis of Arabidopsis embryogenesis in vitro. BMC Genomics 16:1–23. CrossRefGoogle Scholar
  83. Winkelmann T, Ratjens S, Bartsch M, Rode C, Niehaus K, Bednarz H (2015) Metabolite profiling of somatic embryos of Cyclamen persicum in comparison to zygotic embryos, endosperm, and testa. Front Plant Sci 6:1–11. CrossRefGoogle Scholar
  84. Wójcikowska B, Jaskóła K, Gąsiorek P, Meus M, Nowak K, Gaj MD (2013) LEAFY COTYLEDON2 (LEC2) promotes embryogenic induction in somatic tissues of Arabidopsis, via YUCCA-mediated auxin biosynthesis. Planta 238(3):425–440. CrossRefPubMedPubMedCentralGoogle Scholar
  85. Xia J, Psychogios N, Young N, Wishart DS (2009) MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res 37:652–660. CrossRefGoogle Scholar
  86. Xia J, Mandal R, Sinelnikov I, Broadhurst D, Wishart DS (2012) MetaboAnalyst 2.0—a comprehensive server for metabolomic data analysis. Nucleic Acids Res 40:127–133. CrossRefGoogle Scholar
  87. Xia J, Sinelnikov IV, Han B, Wishart DS (2015) MetaboAnalyst 3.0—making metabolomics more meaningful. Nucleic Acids Res 43:251–257. CrossRefGoogle Scholar
  88. Xu Z, Zhang C, Zhang X, Liu C, Wu Z, Yang Z, Zhou K, Yang X, Li F (2013) Transcriptome profiling reveals auxin and cytokinin regulating somatic embryogenesis in different sister lines of cotton cultivar CCRI24. J Int Plant Biol 55:631–642.
  89. Ye XG, Tao LL (2008) Research outline on some characteristics of Brachypodium distachyon as a new model plant species. Acta Agron Sin 34:919–925. CrossRefGoogle Scholar
  90. Yin L, Lan Y, Zhu L (2008) Analysis of the protein expression profiling during rice callus differentiation under different plant hormone conditions. Plant Mol Biol 68:597–617. CrossRefPubMedGoogle Scholar
  91. Yordem BK, Conte SS, Ma JF, Yokosho K, Vasques KA, Gopalsamy SN, Walker EL (2011) Brachypodium distachyon as a new model system for understanding iron homeostasis in grasses: phylogenetic and expression analysis of Yellow Stripe-Like (YSL) transporters. Ann Bot 108:821–833. CrossRefPubMedPubMedCentralGoogle Scholar
  92. Zhao Y (2012) Auxin biosynthesis: a simple two-step pathway converts tryptophan to Indole-3-acetic acid in plants. Mol Plant 5:334–338. CrossRefPubMedGoogle Scholar
  93. Zheng Q, Perry SE (2014) Alterations in the transcriptome of soybean in response to enhanced somatic embryogenesis promoted by orthologs of AGAMOUS-Like15 and AGAMOUS-Like18. Plant Physiol 164:1365–1377. CrossRefPubMedPubMedCentralGoogle Scholar
  94. Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411–1423. CrossRefPubMedPubMedCentralGoogle Scholar
  95. Zombori Z, Szécsényi M, Györgyey J (2011) Different approaches for Agrobacterium-mediated genetic transformation of Brachypodium distachyon, a new model plant for temperate grasses. Acta Biol Szeged 55:193–195Google Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  • T. C. Mamedes-Rodrigues
    • 1
  • D. S. Batista
    • 1
  • N. M. Vieira
    • 2
  • E. M. Matos
    • 1
  • D. Fernandes
    • 1
  • A. Nunes-Nesi
    • 3
  • C. D. Cruz
    • 4
  • L. F. Viccini
    • 5
  • F. T. S. Nogueira
    • 6
  • W. C. Otoni
    • 1
    Email author
  1. 1.Laboratório de Cultura de Tecidos/BIOAGRO, Departamento de Biologia VegetalUniversidade Federal de ViçosaViçosaBrazil
  2. 2.Departamento de Microbiologia/Núcleo de Análises de Biomoléculas-NUBIOMOLUniversidade Federal de ViçosaViçosaBrazil
  3. 3.Departamento de Biologia VegetalUniversidade Federal de ViçosaViçosaBrazil
  4. 4.Laboratório de Bioinformática/BIOAGRO, Departamento de Biologia GeralUniversidade Federal de ViçosaViçosaBrazil
  5. 5.Laboratório de Genética e Biotecnologia, Departamento de Ciências BiológicasUniversidade Federal de Juiz de ForaJuiz de ForaBrazil
  6. 6.Laboratório de Genética Molecular do Desenvolvimento Vegetal (LGMDV)Universidade de São Paulo / ESALQPiracicabaBrazil

Personalised recommendations