Advertisement

Protoplasma

, Volume 255, Issue 2, pp 485–499 | Cite as

Floral features of two species of Bulbophyllum section Lepidorhiza Schltr.: B. levanae Ames and B. nymphopolitanum Kraenzl. (Bulbophyllinae Schltr., Orchidaceae)

  • Natalia Wiśniewska
  • Agnieszka K. KowalkowskaEmail author
  • Małgorzata Kozieradzka-Kiszkurno
  • Agnieszka T. Krawczyńska
  • Jerzy Bohdanowicz
Original Article

Abstract

Two representatives of section Lepidorhiza, previously sometimes considered conspecific, Bulbophyllum levanae and Bulbophyllum nymphopolitanum, demonstrated both similarities and differences in floral features. There were significant differences in the length of sepals and micromorphological features of the labellum. In both species, osmophores are located on the extended apices of sepals and possibly on petals. An abundance of proteins in tepals is probably associated with the unpleasant scent of the flowers, whereas the thin wax layers on the epidermis are probably involved in the maintenance of the brilliance of floral tepals, which strongly attracts flies. In all tepals of both species, we noted the presence of dihydroxyphenolic globules in the cytoplasm after staining with FeCl3. Comparison with ultrastructure results revealed that they were associated with plastids containing plastoglobuli. The most remarkable feature was the presence of a prominent periplasmic space in the epidermal cells of both investigated species. Furthermore, in the labellum of B. levanae, the cuticle contained microchannels. The combination of periplasmic space and microchannels has not previously been recorded.

Keywords

Bulbophyllum Bulbophyllum levanae Bulbophyllum nymphopolitanum Histochemistry Lepidorhiza Micromorphology Orchidaceae Ultrastructure 

Notes

Acknowledgements

The authors are very grateful to Univ.-Prof. Dr. Michael Kiehn and Anton Sieder from Botanischer Garten der Universität Wien, Christopher Ryan and Bala Kompalli from Royal Botanic Gardens - Kew, as well as to the Botanical Garden of the Jagiellonian University and Prague Botanical Garden for making specimens available. We thank Rudolf Hromniak and Paolo Rossoni (www.bulbophyllum.at) for providing the photos for this article and dr. hab. Bartosz Płachno for helpful hand with these research. We also thank the anonymous reviewers for valuable commentary on the manuscript.

Funding information

This work was supported by the National Science Centre in Poland (5804/B/PO1/2010/39) and by the University of Gdansk, Faculty of Biology (538-L160-B947-15).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Antoń S, Kamińska M, Stpiczyńska M (2012) Comparative structure of the osmophores in the flowers of Stanhopea graveolens Lindley and Cycnoches chlorochilon Klotzsch (Orchidaceae). Acta Agrobot 65:11–22.  https://doi.org/10.5586/aa.2012.054 CrossRefGoogle Scholar
  2. Borba EL, Semir J (1998) Wind-assisted fly pollination in three Bulbophyllum (Orchidaceae) species occurring in the Brazilian campos rupestres. Lindleyana 13:203–218Google Scholar
  3. Brillouet J-M, Romieu C, Schoefs B, Solymosi K, Cheynier V, Fulcrand H, Verdeil J-L, Conéjéro (2013) The tannosome is an organelle forming condensed tannins in the chlorophyllous organs of Tracheophyta. Ann Bot.  https://doi.org/10.1093/aob/mct168mct168
  4. Bronner R (1975) Simultaneous demonstration of lipid and starch in plant tissues. Stain Technol 50(1):1–4CrossRefPubMedGoogle Scholar
  5. Curry KJ, Stern WL, McDowell LM (1988) Osmophore development in Stanhopea anfracta and S. pulla (Orchidaceae). Lindleyana 3:212Google Scholar
  6. Davies KL, Stpiczyńska M (2012) Comparative labellar anatomy of resin-secreting and putative resin-mimic species of Maxillaria s.l. (Orchidaceae: Maxillariinae). Bot J Linn Soc 170:405–435.  https://doi.org/10.1111/j.1095-8339.2012.01278.x CrossRefGoogle Scholar
  7. Davies KL, Stpiczyńska M (2014) Labellar anatomy and secretion in Bulbophyllum Thouars (Orchidaceae: Bulbophyllinae) sect. Racemosae Benth. & Hook. F. Ann Bot.  https://doi.org/10.1093/aob/mcu153
  8. De Melo MC, Borba EL, Paiva EAS (2010) Morphological and histological characterization of the osmophores and nectaries of four species of Acianthera (Orchidaceae: Pleurothallidinae). Lankesteriana 9:3–6Google Scholar
  9. Endress PK (1994) Diversity and evolutionary biology of tropical flowers. Cambridge University Press, CambridgeGoogle Scholar
  10. Fahn A (1979) Ultrastructure of nectaries in relation to nectar secretion. Am J Bot. 1979; 66: 977.  https://doi.org/10.2307/2442240
  11. Feder N, O’Brien TP (1968) Plant microtechnique: some principles and new methods. Am J Bot 55:123–142.  https://doi.org/10.2307/2440500 CrossRefGoogle Scholar
  12. Gahan PB (1984) Plant histochemistry and cytochemistry: an introduction. Academic Press, LondonGoogle Scholar
  13. García AMT, Galati BG, Hoc PS (2007) Ultrastructure of the corona of scented and scentless flowers of Passiflora spp. (Passifloraceae). Flora 202:302–315.  https://doi.org/10.1016/j.flora.2006.08.003 CrossRefGoogle Scholar
  14. Heslop-Harrison Y (1977) The pollen stigma interaction: pollen tube penetration in Crocus. Ann Bot 41:913–922CrossRefGoogle Scholar
  15. Jensen W (1962) Botanical histochemistry. Freeman, San FranciscoGoogle Scholar
  16. Johansen DA (1940) Plant microtechnique. McGraw-Hill Book Company, New YorkGoogle Scholar
  17. Johnson SD, Jürgens A (2010) Convergent evolution of carrion and faecal scent mimicry in fly-pollinated angiosperm flowers and a stinkhorn fungus. S Afr J Bot 76:796–807.  https://doi.org/10.1016/j.sajb.2010.07.012 CrossRefGoogle Scholar
  18. Jürgens A, Dötterl S, Meve U (2006) The chemical nature of fetid floral odours in stapeliads (Apocynaceae-Asclepiadoideae-Ceropegieae). New Phytol 172:452–468.  https://doi.org/10.1111/j.1469-8137.2006.01845.x CrossRefPubMedGoogle Scholar
  19. Kowalkowska AK (2009) Analiza porównawcza struktur kwiatowych wabiących owady u wybranych gatunków Bulbophyllinae Schltr. i Pleurothallidinae Lindl. (Orchidaceae)/Comparative analysis of floral structures attracting insects in selected species of Bulbophyllinae Schltr. and Pleurothallidinae Lindl. (Orchidaceae). PhD dissertation, the University of Gdańsk, GdańskGoogle Scholar
  20. Kowalkowska AK, Margońska HB, Kozieradzka-Kiszkurno M, Bohdanowicz J (2012) Studies on the ultrastructure of a three- spurred fumeauxiana form of Anacamptis pyramidalis. Plant Syst Evol 298:1025–1035.  https://doi.org/10.1007/s00606-012-0611-y CrossRefGoogle Scholar
  21. Kowalkowska AK, Kostelecka J, Bohdanowicz J et al (2014a) Studies on floral nectary, tepals’ structure, and gynostemium morphology of Epipactis palustris (L.) Crantz (Orchidaceae). Protoplasma 252:321–333.  https://doi.org/10.1007/s00709-014-0668-2 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kowalkowska AK, Kozieradzka-Kiszkurno M, Turzyński S (2014b) Morphological, histological and ultrastructural features of osmophores and nectary of Bulbophyllum wendlandianum (Kraenzl.) Dammer (B. section Cirrhopetalum Lindl., Bulbophyllinae Schltr., Orchidaceae). Plant Syst Evol 301:609–622.  https://doi.org/10.1007/s00606-014-1100-2 CrossRefGoogle Scholar
  23. Kowalkowska AK, Turzyński S, Kozieradzka-Kiszkurno M, Wiśniewska N (2016) Floral structure of two species of Bulbophyllum section Cirrhopetalum Lindl.: B. weberi Ames and B. cumingii (Lindl.) Rchb. f. (Bulbophyllinae Schltr., Orchidaceae). Protoplasma.  https://doi.org/10.1007/s00709-016-1034-3
  24. Machado SR, Gregório EA, Guimarães E (2006) Ovary peltate trichomes of Zeyheria montana (Bignoniaceae): developmental ultrastructure and secretion in relation to function. Ann Bot.  https://doi.org/10.1093/aob/mcj042
  25. Merino G, Doucette A, Pupulin F (2010) New species of Porroglossum (Orchidaceae: Pleurothallidinae) from Ecuador. Lankesteriana 9:3–6Google Scholar
  26. Meve U, Liede S (1994) Floral biology and pollination in stapeliads—new results and a literature review. Plant Syst Evol 192:99–116.  https://doi.org/10.1007/BF00985911 CrossRefGoogle Scholar
  27. Miller RH (1985) The prevalence of pores and canals in leaf cuticular membranes. Ann Bot 55: 459–471.  https://doi.org/10.1093/oxfordjournals.aob.a086924
  28. Nepi M (2007) Nectary structure and ultrastructure. In: Nicolson SW, Nepi M, Pacini E (eds) Nectaries and nectar. Springer, Rotterdam, pp 129–166.  https://doi.org/10.1007/978-1-4020-5937-7_3 CrossRefGoogle Scholar
  29. Nunes ELP, Smidt EC, Stützel T, Coan AI (2014) What do floral anatomy and micromorphology tell us about Neotropical Bulbophyllum section Didactyle (Orchidaceae: Bulbophyllinae)? Bot J Linn Soc 175:438–452.  https://doi.org/10.1111/boj.12176 CrossRefGoogle Scholar
  30. Nunes ELP, Smidt EC, Stützel T, Coan AI (2015) Comparative floral micromorphology and anatomy of species of Bulbophyllum section Napelli (Orchidaceae), a Neotropical section widely distributed in forest habitats. Bot J Linn Soc 177:378–394.  https://doi.org/10.1111/boj.12253 CrossRefGoogle Scholar
  31. Pacini E, Nepi M (2007) Nectar production and presentation. In: Nicolson SW, Nepi M, Pacini E (eds) Nectaries and nectar. Springer, Rotterdam, pp 167–214.  https://doi.org/10.1007/978-1-4020-5937-7 CrossRefGoogle Scholar
  32. Pais M, Figueiredo ACS (1994) Floral nectaries from Limodorum abortivum (L.) Sw. and Epipactis atropurpurea Rafin. (Orchidaceae): ultrastructural changes in plastids during the secretory process. Apidologie 25:615–626CrossRefGoogle Scholar
  33. Paiva EAS (2016) How do secretory products cross the plant cell wall to be released? A new hypothesis involving cyclic mechanical actions of the protoplast. Ann Bot 117:533–540.  https://doi.org/10.1093/aob/mcw012 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Płachno BJ, Światek P, Szymczak G (2010) Can a stench be beautiful?—osmophores in stem-succulent stapeliads (Apocynaceae-Asclepiadoideae-Ceropegieae-Stapeliinae). Flora Morphol Distrib Funct Ecol Plants 205:101–105.  https://doi.org/10.1016/j.flora.2009.01.002 CrossRefGoogle Scholar
  35. Pridgeon AM, Stern WL (1985) Osmophores of Scaphosepalum (Orchidaceae). Bot Gaz 146:115–123CrossRefGoogle Scholar
  36. Pridgeon AM, Cribb PJ, Rasmussen FN, Chase MW (2014) Genera Orchidacearum: Epidendroideae. Oxford University Press, OxfordGoogle Scholar
  37. Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ruzin S (1999) Plant microtechnique and microscopy. Oxford University Press, New YorkGoogle Scholar
  39. Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43.  https://doi.org/10.1016/S0022-5320(69)90033-1 CrossRefPubMedGoogle Scholar
  40. Statheropoulos M, Spiliopoulou C, Agapiou A (2005) A study of volatile organic compounds evolved from the decaying human body. Forensic Sci Int 153:147–155.  https://doi.org/10.1016/j.forsciint.2004.08.015 CrossRefPubMedGoogle Scholar
  41. Stern WL, Curry KJ, Pridgeon AM (1987) Osmophores of Stanhopea (Orchidaceae). Amer J Bot 74:1323–1331.  https://doi.org/10.2307/2444310 CrossRefGoogle Scholar
  42. Stpiczyńska M, Davies KL (2008) Elaiophore structure and oil secretion in flowers of Oncidium trulliferum Lindl. and Ornithophora radicans (Rchb.f.) Garay & Pabst (Oncidiinae: Orchidaceae). Ann Bot 101:375–384.  https://doi.org/10.1093/aob/mcm297 CrossRefPubMedGoogle Scholar
  43. Stpiczyńska M, Davies KL (2016) Evidence for the dual role of floral secretory cells in Bulbophyllum. Acta Biol Cracov Ser Bot 58:57–69.  https://doi.org/10.1515/abcsb-2016-0013 Google Scholar
  44. Stpiczyńska M, Davies KL, Gregg A (2004) Nectary structure and nectar secretion in Maxillaria coccinea (Jacq.) L.O. Williams ex Hodge (Orchidaceae). Ann Bot 93:87–95.  https://doi.org/10.1093/aob/mch00 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Stpiczyńska M, Milanesi C, Faleri C, Cresti M (2005) Ultrastructure of the nectary spur of Platanthera chlorantha (Custer) Rchb. (Orchidaceae) during successive stages of nectar secretion. Acta Biol Cracov Ser Bot 47:111–119Google Scholar
  46. Stpiczyńska M, Davies KL, Kamińska M (2015) Diverse labellar secretions in African Bulbophyllum (Orchidaceae: Bulbophyllinae) sections Ptiloglossum, Oreonastes and Megaclinium. Bot J Linn Soc 179(2):266–287CrossRefGoogle Scholar
  47. Teixeira SDP, Borba EL, Semir J (2004) Lip anatomy and its implications for the pollination mechanisms of Bulbophyllum species (Orchidaceae). Ann Bot 93:499–505.  https://doi.org/10.1093/aob/mch072 CrossRefPubMedCentralGoogle Scholar
  48. Van Der Niet T, Hansen DM, Johnson SD (2011) Carrion mimicry in a South African orchid: flowers attract a narrow subset of the fly assemblage on animal carcasses. Ann Bot 107:981–992.  https://doi.org/10.1093/aob/mcr048 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Vogel S (1990) The role of scent glands in pollination: on the structure and function of osmophores. Amerind, New DelhiGoogle Scholar
  50. Wist JT, Davis AR (2005) Floral nectar production and nectary anatomy and ultrastructure of Echinacea purpurea (Asteraceae). Ann Bot 97:177–193.  https://doi.org/10.1093/aob/mcj027 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  • Natalia Wiśniewska
    • 1
  • Agnieszka K. Kowalkowska
    • 1
    Email author
  • Małgorzata Kozieradzka-Kiszkurno
    • 1
  • Agnieszka T. Krawczyńska
    • 2
  • Jerzy Bohdanowicz
    • 1
  1. 1.Department of Plant Cytology and EmbryologyUniversity of GdańskGdańskPoland
  2. 2.Faculty of Materials Science and EngineeringWarsaw University of TechnologyWarsawPoland

Personalised recommendations