, Volume 254, Issue 5, pp 1903–1907 | Cite as

The cryptomonad nucleomorph

  • Geoffrey I. McFadden
Original Article


The cryptomonad nucleomorph is a vestigial nucleus of a eukaryotic red alga engulfed by a phagotrophic protist and retained as a photosynthetic endosymbiont. This review recounts the initial discovery and subsequent characterisation of the cryptomonad nucleomorph focusing on the key role of Peter Sitte and his protégés in our understanding of secondary endosymbiosis to create complex plastids, one of the major transition events in the evolution of life on Earth.


Nucleomorph Cryptomonad Plastid Endosymbiosis 


  1. Bagola K, Mehnert M, Jarosch E, Sommer T (2010) Protein dislocation from the ER. Biochim Biophys Acta 1808:925–936CrossRefPubMedGoogle Scholar
  2. Bhaya D, Grossman A (1991) Targeting proteins to diatom plastids involves transport through an endoplasmic reticulum. Mol Gen Genet 229:400–404CrossRefPubMedGoogle Scholar
  3. Curtis BA, Tanifuji G, Burki F, Gruber A, Irimia M, Maruyama S, Arias MC, Ball SG, Gile GH, Hirakawa Y, Hopkins JF, Kuo A, Rensing SA, Schmutz J, Symeonidi A, Elias M, Eveleigh RJ, Herman EK, Klute MJ, Nakayama T, Obornik M, Reyes-Prieto A, Armbrust EV, Aves SJ, Beiko RG, Coutinho P, Dacks JB, Durnford DG, Fast NM, Green BR, Grisdale CJ, Hempel F, Henrissat B, Hoppner MP, Ishida K, Kim E, Koreny L, Kroth PG, Liu Y, Malik SB, Maier UG, McRose D, Mock T, Neilson JA, Onodera NT, Poole AM, Pritham EJ, Richards TA, Rocap G, Roy SW, Sarai C, Schaack S, Shirato S, Slamovits CH, Spencer DF, Suzuki S, Worden AZ, Zauner S, Barry K, Bell C, Bharti AK, Crow JA, Grimwood J, Kramer R, Lindquist E, Lucas S, Salamov A, McFadden GI, Lane CE, Keeling PJ, Gray MW, Grigoriev IV, Archibald JM (2012) Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature 492:59–65CrossRefPubMedGoogle Scholar
  4. Douglas S, Zauner S, Fraunholz M, Beaton M, Penny S, Deng L-T, Wu X, Reith ME, Cavalier-Smith T, Maier U-G (2001) The highly reduced genome of an enslaved algal nucleus. Nature 410:1091–1096CrossRefPubMedGoogle Scholar
  5. Douglas SE, Murphy CA, Spencer DF, Gray MW (1991) Cryptomonad algae are evolutionary chimaeras of two phylogenetically distinct unicellular eukaryotes. Nature 350:148–151CrossRefPubMedGoogle Scholar
  6. Eschbach S, Hofmann C, Maier U-G, Sitte P, Hansmann P (1991a) A eukaryotic genome of 660kb: electrophoretic karyotype of nucleomorph and cell nucleus of the cryptomonad alga, Pyrenomonas salina. Nucl Acids Res 19:1779–1781CrossRefPubMedPubMedCentralGoogle Scholar
  7. Eschbach S, Wolters J, Sitte P (1991b) Primary and secondary structure of the nuclear small subunit ribosomal RNA of the cryptomonad Pyrenomonas salina as inferred from the gene sequence: evolutionary implications. J Mol Evol 32:247–252CrossRefPubMedGoogle Scholar
  8. Fellows JD, Cipriano MJ, Agrawal S, Striepen B (2017) A plastid protein that evolved from ubiquitin and is required for apicoplast protein import in Toxoplasma gondii MBio 8Google Scholar
  9. Gillot M, Gibbs S (1980) The cryptomonad nucleomorph: its ultrastructure and evolutionary significance. J Phycol 16:558–568CrossRefGoogle Scholar
  10. Gould SB, Maier UG, Martin WF (2015) Protein import and the origin of red complex plastids. Curr Biol 25:R515–R521CrossRefPubMedGoogle Scholar
  11. Gould SB, Sommer MS, Hadfi K, Zauner S, Kroth PG, Maier UG (2006) Protein targeting into the complex plastid of cryptophytes. J Mol Evol 62:674–681CrossRefPubMedGoogle Scholar
  12. Greenwood A (1974) The Cryptophyta in relation to phylogeny and photosynthesis. In: Sanders J, Goodchild D (eds) 8th international congress of electron microscopy. Australian Academy of Sciences, Canberra, pp 566–567Google Scholar
  13. Greenwood A, Griffiths H, Santore U (1977) Chloroplasts and cell compartments in Cryptophyceae. Br Phycol J 12:119Google Scholar
  14. Hansmann P (1988) Ultrastructural localization of RNA in cryptomonads. Protoplasma 146:81–88CrossRefGoogle Scholar
  15. Hansmann P, Eschbach S (1990) Isolation and preliminary characterization of the nucleus and the nucleomorph of a cryptomonad, Pyrenomonas salina. Eur J Cell Biol 52:373–378PubMedGoogle Scholar
  16. Hansmann P, Falk H, Scheer U, Sitte P (1987a) Ultrastructural localization of DNA in two Cryptomonas species by use of a new monoclonal DNA antibody. Eur J Cell Biol 42:152–160Google Scholar
  17. Hansmann P, Falk H, Sitte P (1985) Zeitschrift fur Naturforschung 40c:933-935Google Scholar
  18. Hansmann P, Maerz M, Sitte P (1987b) Investigations on genomes and nucleic acids in cryptomonads. Endocyt C Res 4:289–295Google Scholar
  19. Hempel F, Bullmann L, Lau J, Zauner S, Maier UG (2009) ERAD-derived preprotein transport across the second outermost plastid membrane of diatoms. Mol Biol Evol 26:1781–1790CrossRefPubMedGoogle Scholar
  20. Lane CE, Archibald JM (2006) Novel nucleomorph genome architecture in the cryptomonad genus Hemiselmis. J Eukaryot Microbiol 53:515–521CrossRefPubMedGoogle Scholar
  21. Lane CE, van den Heuvel K, Kozera C, Curtis BA, Parsons BJ, Bowman S, Archibald JM (2007) Nucleomorph genome of Hemiselmis andersenii reveals complete intron loss and compaction as a driver of protein structure and function. Proc Natl Acad Sci U S A 104:19908–19913CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ludwig M, Gibbs S (1985) DNA is present in the nucleomorph of cryptomonads: further evidence that the chloroplast evolved from a eukaryotic endosymbiont. Protoplasma 127:9–20CrossRefGoogle Scholar
  23. Maier U-G, Hofmann C, Eschbach S, Wolters J, Igloi G (1991) Demonstration of nucleomorph-encoded eukaryotic small subunit ribosomal RNA in cryptomonads. Mol Gen Genet 230:155–160CrossRefPubMedGoogle Scholar
  24. Maier UG, Zauner S, Hempel F (2015) Protein import into complex plastids: cellular organization of higher complexity. Eur J Cell Biol 94:340–348CrossRefPubMedGoogle Scholar
  25. McFadden GI (1990a) Evidence that cryptomonad chloroplasts evolved from photosynthetic eukaryotic endosymbionts. J Cell Sci 95:303–308Google Scholar
  26. McFadden GI (1990b) Evolution of algal plastids from eukaryotic endosymbionts. In: Harris N, Wilkinson D (eds) In situ hybridization: applications to developmental biology and medicine. Cambridge University Press, Cambridge, pp 143–156CrossRefGoogle Scholar
  27. McFadden GI (1993) Second-hand chloroplasts: evolution of cryptomonad algae. Adv Bot Res 19:189–230CrossRefGoogle Scholar
  28. McFadden GI, Gilson PR, Douglas SE (1994) The photosynthetic endosymbiont in cryptomonad cells produces both chloroplast and cytoplasmic-type ribosomes. J Cell Sci 107:649–657PubMedGoogle Scholar
  29. McFadden GI, Gilson PR, Douglas SE, Hofmann CJB, Maier U-G (1997) Bonsai genomics: sequencing the smallest eukaryotic genomes. Trends Genet 13:46–49CrossRefPubMedGoogle Scholar
  30. McFadden GI, van Dooren GG (2004) Evolution: red algal genome affirms a common origin of all plastids. Curr Biol 14:R514–R516CrossRefPubMedGoogle Scholar
  31. McKerracher L, Gibbs SP (1983) Cell and nucleomorph division in the alga Cryptomonas. Can J Bot 60:2440–2452CrossRefGoogle Scholar
  32. Mehnert M, Sommer T, Jarosch E (2010) ERAD ubiquitin ligases: multifunctional tools for protein quality control and waste disposal in the endoplasmic reticulum. BioessaysGoogle Scholar
  33. Moore CE, Curtis B, Mills T, Tanifuji G, Archibald JM (2012) Nucleomorph genome sequence of the cryptophyte alga Chroomonas mesostigmatica CCMP1168 reveals lineage-specific gene loss and genome complexity. Genome Biol Evol 4:1162–1175CrossRefPubMedPubMedCentralGoogle Scholar
  34. Morrall S, Grenwood AD (1982) Ultastructure of nucleomorph division in species of Cryptophyceae and its evolutionary implications. J Cell Sci 54:311–328Google Scholar
  35. Ralph SA, Foth BJ, Hall N, McFadden GI (2004) Evolutionary pressures on apicoplast transit peptides. Mol Biol Evol 21:2183–2194CrossRefPubMedGoogle Scholar
  36. Reith M (1996) The evolution of plastids and photosynthetic apparatus. In: Ort D, Yocum C (eds) Oxygenic photosynthesis: the light reactions. Kluwer Academic Publishers, Netherlands, pp 643–657Google Scholar
  37. Santore U (1982) The distribution of the nucleomorph. Cell Biol Int Rep 6:1055–1063CrossRefPubMedGoogle Scholar
  38. Sitte P, Baltes S (1990) Morphometric analyis of two cryptomonads. Quantitative evaluation of fine-structural changes in an endocytobiotic system. Endocytobiology 6:229–233Google Scholar
  39. Sommer MS, Gould SB, Lehmann P, Gruber A, Przyborski JM, Maier UG (2007) Der1-mediated preprotein import into the periplastid compartment of chromalveolates? Mol Biol Evol 24:918–928CrossRefPubMedGoogle Scholar
  40. Tanifuji G, Onodera NT, Wheeler TJ, Dlutek M, Donaher N, Archibald JM (2011) Complete nucleomorph genome sequence of the nonphotosynthetic alga Cryptomonas paramecium reveals a core nucleomorph gene set. Genome Biol Evol 3:44–54CrossRefPubMedGoogle Scholar
  41. Zauner S, Fraunholz M, Wastl J, Penny S, Beaton M, Cavalier-Smith T, Maier U-G, Douglas S (2000) Chloropast protein and centrosomal genes, a tRNA intron, and odd telomeres in an unusually compact eukaryotic genome, the cryptomonad nucleomorph. Proc Natl Acad Sci U S A 97:200–205CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  1. 1.School of BioSciencesUniversity of MelbourneParkvilleAustralia
  2. 2.Botany SchoolUniversity of MelbourneParkvilleAustralia

Personalised recommendations