Advertisement

Protoplasma

, Volume 254, Issue 3, pp 1219–1232 | Cite as

Lymphocytes and macrophages in adipose tissue in obesity: markers or makers of subclinical inflammation?

  • Anna Cinkajzlová
  • Miloš Mráz
  • Martin HaluzíkEmail author
Review Article

Abstract

Obesity is accompanied by the development of chronic low-grade inflammation in adipose tissue. The presence of chronic inflammatory response along with metabolically harmful factors released by adipose tissue into the circulation is associated with several metabolic complications of obesity such as type 2 diabetes mellitus or accelerated atherosclerosis. The present review is focused on macrophages and lymphocytes and their possible role in low-grade inflammation in fat. Both macrophages and lymphocytes respond to obesity-induced adipocyte hypertrophy by their migration into adipose tissue. After activation and differentiation, they contribute to the development of local inflammatory response and modulation of endocrine function of adipose tissue. Despite intensive research, the exact role of lymphocytes and macrophages within adipose tissue is only partially clarified and various data obtained by different approaches bring ambiguous information with respect to their polarization and cytokine production. Compared to immunocompetent cells, the role of adipocytes in the obesity-related adipose tissue inflammation is often underestimated despite their abundant production of factors with immunomodulatory actions such as cytokines or adipokines such as leptin, adiponektin, and others. In summary, conflicting evidence together with only partial correlation of in vitro findings with true in vivo situation due to great heterogeneity and molecular complexity of tissue environment calls for intensive research in this rapidly evolving and important area.

Keywords

Macrophages Lymphocytes Adipocytes Low-grade inflammation Obesity 

Notes

Acknowledgements

Supported by grants from Agency for the Czech Republic health research AZV No. 15-27863A and 15-26854A and by Ministry of Health, Czech Republic—conceptual development of research organization RVO-VFN64165 and MH CZ–DRO IKEM, IN 000023001.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Reference

  1. Acedo SC, Gambero S, Cunha FG, Lorand-Metze I, Gambero A (2013) Participation of leptin in the determination of the macrophage phenotype: an additional role in adipocyte and macrophage crosstalk. In Vitro Cell Dev Biol Anim 49:473–478. doi: 10.1007/s11626-013-9629-x PubMedCrossRefGoogle Scholar
  2. Acosta JR, Douagi I, Andersson DP, Backdahl J, Ryden M, Arner P, Laurencikiene J (2016) Increased fat cell size: a major phenotype of subcutaneous white adipose tissue in non-obese individuals with type 2 diabetes. Diabetologia 59:560–570. doi: 10.1007/s00125-015-3810-6 PubMedCrossRefGoogle Scholar
  3. Ajuwon KM, Spurlock ME (2005) Adiponectin inhibits LPS-induced NF-kappa B activation and IL-6 production and increases PPARgamma2 expression in adipocytes. Am J Physiol Regul Integr Comp Physiol 288:R1220–R1225. doi: 10.1152/ajpregu.00397.2004 PubMedCrossRefGoogle Scholar
  4. Amano SU, Cohen JL, Vangala P, Tencerova M, Nicoloro SM, Yawe JC, Shen Y, Czech MP, Aouadi M (2014) Local proliferation of macrophages contributes to obesity-associated adipose tissue inflammation. Cell Metab 19:162–171. doi: 10.1016/j.cmet. 2013.11.017 PubMedCrossRefGoogle Scholar
  5. Aron-Wisnewsky J, Tordjman J, Poitou C, Darakhshan F, Hugol D, Basdevant A, Aissat A, Guerre-Millo M, Clement K (2009) Human adipose tissue macrophages: m1 and m2 cell surface markers in subcutaneous and omental depots and after weight loss. J Clin Endocrinol Metab 94:4619–4623. doi: 10.1210/jc.2009-0925 PubMedCrossRefGoogle Scholar
  6. Auffray C, Fogg D, Garfa M, Elain G, Join-Lambert O, Kayal S, Sarnacki S, Cumano A, Lauvau G, Geissmann F (2007) Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317:666–670. doi: 10.1126/science.1142883 PubMedCrossRefGoogle Scholar
  7. Balaji S, Wang X, King A, Le LD, Bhattacharya SS, Moles CM, Butte MJ, de Jesus Perez VA, Liechty KW, Wight TN, Crombleholme TM, Bollyky PL, Keswani SG (2016) Interleukin-10-mediated regenerative postnatal tissue repair is dependent on regulation of hyaluronan metabolism via fibroblast-specific STAT3 signaling. FASEB J. doi: 10.1096/fj.201600856R PubMedPubMedCentralGoogle Scholar
  8. Belge KU, Dayyani F, Horelt A, Siedlar M, Frankenberger M, Frankenberger B, Espevik T, Ziegler-Heitbrock L (2002) The proinflammatory CD14 + CD16 + DR++ monocytes are a major source of TNF. J Immunol 168:3536–3542PubMedCrossRefGoogle Scholar
  9. Berger A (2000) Th1 and Th2 responses: what are they? BMJ 321:424PubMedPubMedCentralCrossRefGoogle Scholar
  10. Borg NA, Wun KS, Kjer-Nielsen L, Wilce MC, Pellicci DG, Koh R, Besra GS, Bharadwaj M, Godfrey DI, McCluskey J, Rossjohn J (2007) CD1d-lipid-antigen recognition by the semi-invariant NKT T-cell receptor. Nature 448:44–49. doi: 10.1038/nature 05907 PubMedCrossRefGoogle Scholar
  11. Bosanska L, Michalsky D, Lacinova Z, Dostalova I, Bartlova M, Haluzikova D, Matoulek M, Kasalicky M, Haluzik M (2010) The influence of obesity and different fat depots on adipose tissue gene expression and protein levels of cell adhesion molecules. Physiol Res 59:79–88PubMedGoogle Scholar
  12. Bouloumie A, Casteilla L, Lafontan M (2008) Adipose tissue lymphocytes and macrophages in obesity and insulin resistance: makers or markers, and which comes first? Arterioscler Thromb Vasc Biol 28:1211–1213. doi: 10.1161/ATVBAHA.108.168229 PubMedCrossRefGoogle Scholar
  13. Bouloumie A, Drexler HC, Lafontan M, Busse R (1998) Leptin, the product of Ob gene, promotes angiogenesis. Circ Res 83:1059–1066PubMedCrossRefGoogle Scholar
  14. Bourlier V, Zakaroff-Girard A, Miranville A, De Barros S, Maumus M, Sengenes C, Galitzky J, Lafontan M, Karpe F, Frayn KN, Bouloumie A (2008) Remodeling phenotype of human subcutaneous adipose tissue macrophages. Circulation 117:806–815. doi: 10.1161/CIRCULATIONAHA.107.724096 PubMedCrossRefGoogle Scholar
  15. Boyman O, Sprent J (2012) The role of interleukin-2 during homeostasis and activation of the immune system. Nat Rev Immunol 12:180–190. doi: 10.1038/nri 3156 PubMedGoogle Scholar
  16. Braun NA, Covarrubias R, Major AS (2010) Natural killer T cells and atherosclerosis: form and function meet pathogenesis. J Innate Immun 2:316–324. doi: 10.1159/000296915 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ (2003) Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 348:1625–1638. doi: 10.1056/NEJMoa021423 PubMedCrossRefGoogle Scholar
  18. Cartwright MJ, Tchkonia T, Kirkland JL (2007) Aging in adipocytes: potential impact of inherent, depot-specific mechanisms. Exp Gerontol 42:463–471. doi: 10.1016/j.exger.2007.03.003 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Caspar-Bauguil S, Cousin B, Galinier A, Segafredo C, Nibbelink M, Andre M, Casteilla L, Penicaud L (2005) Adipose tissues as an ancestral immune organ: site-specific change in obesity. FEBS Lett 579:3487–3492. doi: 10.1016/j.febslet.2005.05.031 PubMedCrossRefGoogle Scholar
  20. Chacon-Salinas R, Limon-Flores AY, Chavez-Blanco AD, Gonzalez-Estrada A, Ullrich SE (2011) Mast cell-derived IL-10 suppresses germinal center formation by affecting T follicular helper cell function. J Immunol 186:25–31. doi: 10.4049/jimmunol.1001657 PubMedCrossRefGoogle Scholar
  21. Chatzigeorgiou A, Phieler J, Gebler J, Bornstein SR, Chavakis T (2013) CD40L stimulates the crosstalk between adipocytes and inflammatory cells. Horm Metab Res 45:741–747. doi: 10.1055/s-0033-1348221 PubMedCrossRefGoogle Scholar
  22. Chaudhry A, Samstein RM, Treuting P, Liang Y, Pils MC, Heinrich JM, Jack RS, Wunderlich FT, Bruning JC, Muller W, Rudensky AY (2011) Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity 34:566–578. doi: 10.1016/j.immuni.2011.03.018 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cheng X, Folco EJ, Shimizu K, Libby P (2012) Adiponectin induces pro-inflammatory programs in human macrophages and CD4+ T cells. J Biol Chem 287:36896–36904. doi: 10.1074/jbc.M112.409516 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chernoff AE, Granowitz EV, Shapiro L, Vannier E, Lonnemann G, Angel JB, Kennedy JS, Rabson AR, Wolff SM, Dinarello CA (1995) A randomized, controlled trial of IL-10 in humans inhibition of inflammatory cytokine production and immune responses. J Immunol 154:5492–5499PubMedGoogle Scholar
  25. Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E, Wang S, Fortier M, Greenberg AS, Obin MS (2005) Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 46:2347–2355. doi: 10.1194/jlr.M500294-JLR200 PubMedCrossRefGoogle Scholar
  26. Claycombe K, King LE, Fraker PJ (2008) A role for leptin in sustaining lymphopoiesis and myelopoiesis. Proc Natl Acad Sci U S A 105:2017–2021. doi: 10.1073/pnas.0712053105 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Costa-Pereira AP, Williams TM, Strobl B, Watling D, Briscoe J, Kerr IM (2002) The antiviral response to gamma interferon. J Virol 76:9060–9068PubMedPubMedCentralCrossRefGoogle Scholar
  28. Creely SJ, McTernan PG, Kusminski CM, Fisher FM, Da Silva NF, Khanolkar M, Evans M, Harte AL, Kumar S (2007) Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab 292:E740–E747. doi: 10.1152/ajpendo.00302.2006 PubMedCrossRefGoogle Scholar
  29. Cressman DE, Greenbaum LE, DeAngelis RA, Ciliberto G, Furth EE, Poli V, Taub R (1996) Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science 274:1379–1383PubMedCrossRefGoogle Scholar
  30. Curat CA, Miranville A, Sengenes C, Diehl M, Tonus C, Busse R, Bouloumie A (2004) From blood monocytes to adipose tissue-resident macrophages: induction of diapedesis by human mature adipocytes. Diabetes 53:1285–1292PubMedCrossRefGoogle Scholar
  31. De Pergola G, Silvestris F (2013) Obesity as a major risk factor for cancer. J Obes 2013:291546. doi: 10.1155/2013/291546 PubMedPubMedCentralCrossRefGoogle Scholar
  32. DeFuria J, Belkina AC, Jagannathan-Bogdan M, Snyder-Cappione J, Carr JD, Nersesova YR, Markham D, Strissel KJ, Watkins AA, Zhu M, Allen J, Bouchard J, Toraldo G, Jasuja R, Obin MS, McDonnell ME, Apovian C, Denis GV, Nikolajczyk BS (2013) B cells promote inflammation in obesity and type 2 diabetes through regulation of T-cell function and an inflammatory cytokine profile. Proc Natl Acad Sci U S A 110:5133–5138. doi: 10.1073/pnas.1215840110 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Deng T, Lyon CJ, Minze LJ, Lin J, Zou J, Liu JZ, Ren Y, Yin Z, Hamilton DJ, Reardon PR, Sherman V, Wang HY, Phillips KJ, Webb P, Wong ST, Wang RF, Hsueh WA (2013) Class II major histocompatibility complex plays an essential role in obesity-induced adipose inflammation. Cell Metab 17:411–422. doi: 10.1016/j.cmet.2013.02.009 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Elgueta R, Benson MJ, de Vries VC, Wasiuk A, Guo Y, Noelle RJ (2009) Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev 229:152–172. doi: 10.1111/j.1600-065X.2009.00782.x PubMedCrossRefGoogle Scholar
  35. Faggioni R, Fantuzzi G, Fuller J, Dinarello CA, Feingold KR, Grunfeld C (1998) IL-1 beta mediates leptin induction during inflammation. Am J Phys 274:R204–R208Google Scholar
  36. Fain JN (2006) Release of interleukins and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to the nonfat cells. Vitam Horm 74:443–477. doi: 10.1016/S0083-6729(06)74018-3 PubMedCrossRefGoogle Scholar
  37. Fernando MR, Reyes JL, Iannuzzi J, Leung G, McKay DM (2014) The pro-inflammatory cytokine, interleukin-6, enhances the polarization of alternatively activated macrophages. PLoS One 9:e94188. doi: 10.1371/journal.pone.0094188 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Fiorentino DF, Bond MW, Mosmann TR (1989) Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J Exp Med 170:2081–2095PubMedCrossRefGoogle Scholar
  39. Freitas do Rosario AP, Lamb T, Spence P, Stephens R, Lang A, Roers A, Muller W, O’Garra A, Langhorne J (2012) IL-27 promotes IL-10 production by effector Th1 CD4+ T cells: a critical mechanism for protection from severe immunopathology during malaria infection. J Immunol 188:1178–1190. doi: 10.4049/jimmunol.1102755 PubMedCrossRefGoogle Scholar
  40. Fried SK, Zechner R (1989) Cachectin/tumor necrosis factor decreases human adipose tissue lipoprotein lipase mRNA levels, synthesis, and activity. J Lipid Res 30:1917–1923PubMedGoogle Scholar
  41. Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M, Kishimoto K, Matsuki Y, Murakami M, Ichisaka T, Murakami H, Watanabe E, Takagi T, Akiyoshi M, Ohtsubo T, Kihara S, Yamashita S, Makishima M, Funahashi T, Yamanaka S, Hiramatsu R, Matsuzawa Y, Shimomura I (2005) Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science 307:426–430. doi: 10.1126/science.1097243 PubMedCrossRefGoogle Scholar
  42. Gao D, Madi M, Ding C, Fok M, Steele T, Ford C, Hunter L, Bing C (2014) Interleukin-1beta mediates macrophage-induced impairment of insulin signaling in human primary adipocytes. Am J Physiol Endocrinol Metab 307:E289–E304. doi: 10.1152/ajpendo.00430.2013 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Gruen ML, Hao M, Piston DW, Hasty AH (2007) Leptin requires canonical migratory signaling pathways for induction of monocyte and macrophage chemotaxis. Am J Physiol Cell Physiol 293:C1481–C1488. doi: 10.1152/ajpcell.00062.2007 PubMedCrossRefGoogle Scholar
  44. Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK, Friedman JM (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269:543–546PubMedCrossRefGoogle Scholar
  45. Halberg N, Wernstedt-Asterholm I, Scherer PE (2008) The adipocyte as an endocrine cell. Endocrinol Metab Clin N Am 37:753–768. doi: 10.1016/j.ecl.2008.07.002 CrossRefGoogle Scholar
  46. Haluzik M, Parizkova J, Haluzik MM (2004) Adiponectin and its role in the obesity-induced insulin resistance and related complications. Physiol Res 53:123–129PubMedGoogle Scholar
  47. Hammarstedt A, Graham TE, Kahn BB (2012) Adipose tissue dysregulation and reduced insulin sensitivity in non-obese individuals with enlarged abdominal adipose cells. Diabetol Metab Syndr 4:42. doi: 10.1186/1758-5996-4-42 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Harkins JM, Moustaid-Moussa N, Chung YJ, Penner KM, Pestka JJ, North CM, Claycombe KJ (2004) Expression of interleukin-6 is greater in preadipocytes than in adipocytes of 3 T3-L1 cells and C57BL/6 J and Ob/Ob mice. J Nutr 134:2673–2677PubMedGoogle Scholar
  49. Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, Becker CD, See P, Price J, Lucas D, Greter M, Mortha A, Boyer SW, Forsberg EC, Tanaka M, van Rooijen N, Garcia-Sastre A, Stanley ER, Ginhoux F, Frenette PS, Merad M (2013) Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38:792–804. doi: 10.1016/j.immuni.2013.04.004 PubMedCrossRefGoogle Scholar
  50. Hong EG, Ko HJ, Cho YR, Kim HJ, Ma Z, Yu TY, Friedline RH, Kurt-Jones E, Finberg R, Fischer MA, Granger EL, Norbury CC, Hauschka SD, Philbrick WM, Lee CG, Elias JA, Kim JK (2009) Interleukin-10 prevents diet-induced insulin resistance by attenuating macrophage and cytokine response in skeletal muscle. Diabetes 58:2525–2535. doi: 10.2337/db08-1261 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Hosogai N, Fukuhara A, Oshima K, Miyata Y, Tanaka S, Segawa K, Furukawa S, Tochino Y, Komuro R, Matsuda M, Shimomura I (2007) Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56:901–911. doi: 10.2337/db06-0911 PubMedCrossRefGoogle Scholar
  52. Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM (1995) Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 95:2409–2415. doi: 10.1172/JCI117936 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Hotamisligil GS, Murray DL, Choy LN, Spiegelman BM (1994) Tumor necrosis factor alpha inhibits signaling from the insulin receptor. Proc Natl Acad Sci U S A 91:4854–4858PubMedPubMedCentralCrossRefGoogle Scholar
  54. Hsu WY, Chao YW, Tsai YL, Lien CC, Chang CF, Deng MC, Ho LT, Kwok CF, Juan CC (2011) Resistin induces monocyte-endothelial cell adhesion by increasing ICAM-1 and VCAM-1 expression in endothelial cells via p38MAPK-dependent pathway. J Cell Physiol 226:2181–2188. doi: 10.1002/jcp.22555 PubMedCrossRefGoogle Scholar
  55. Huang JT, Welch JS, Ricote M, Binder CJ, Willson TM, Kelly C, Witztum JL, Funk CD, Conrad D, Glass CK (1999) Interleukin-4-dependent production of PPAR-gamma ligands in macrophages by 12/15-lipoxygenase. Nature 400:378–382. doi: 10.1038/22572 PubMedCrossRefGoogle Scholar
  56. Jang JE, Ko MS, Yun JY, Kim MO, Kim JH, Park HS, Kim AR, Kim HJ, Kim BJ, Ahn YE, Oh JS, Lee WJ, Harris RA, Koh EH, Lee KU (2016) Nitric oxide produced by macrophages inhibits adipocyte differentiation and promotes profibrogenic responses in preadipocytes to induce adipose tissue fibrosis. Diabetes 65:2516–2528. doi: 10.2337/db15-1624 PubMedCrossRefGoogle Scholar
  57. Jayashree B, Bibin YS, Prabhu D, Shanthirani CS, Gokulakrishnan K, Lakshmi BS, Mohan V, Balasubramanyam M (2014) Increased circulatory levels of lipopolysaccharide (LPS) and zonulin signify novel biomarkers of proinflammation in patients with type 2 diabetes. Mol Cell Biochem 388:203–210. doi: 10.1007/s11010-013-1911-4 PubMedCrossRefGoogle Scholar
  58. Jernas M, Palming J, Sjoholm K, Jennische E, Svensson PA, Gabrielsson BG, Levin M, Sjogren A, Rudemo M, Lystig TC, Carlsson B, Carlsson LM, Lonn M (2006) Separation of human adipocytes by size: hypertrophic fat cells display distinct gene expression. FASEB J 20:1540–1542. doi: 10.1096/fj.05-5678fje PubMedCrossRefGoogle Scholar
  59. Jetten N, Verbruggen S, Gijbels MJ, Post MJ, De Winther MP, Donners MM (2014) Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis 17:109–118. doi: 10.1007/s10456-013-9381-6 PubMedCrossRefGoogle Scholar
  60. Ji Y, Sun S, Xu A, Bhargava P, Yang L, Lam KS, Gao B, Lee CH, Kersten S, Qi L (2012) Activation of natural killer T cells promotes M2 macrophage polarization in adipose tissue and improves systemic glucose tolerance via interleukin-4 (IL-4)/STAT6 protein signaling axis in obesity. J Biol Chem 287:13561–13571. doi: 10.1074/jbc.M112.350066 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Jinquan T, Larsen CG, Gesser B, Matsushima K, Thestrup-Pedersen K (1993) Human IL-10 is a chemoattractant for CD8+ T lymphocytes and an inhibitor of IL-8-induced CD4+ T lymphocyte migration. J Immunol 151:4545–4551PubMedGoogle Scholar
  62. Jo J, Gavrilova O, Pack S, Jou W, Mullen S, Sumner AE, Cushman SW, Periwal V (2009) Hypertrophy and/or hyperplasia: dynamics of adipose tissue growth. PLoS Comput Biol 5:e1000324. doi: 10.1371/journal.pcbi.1000324 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Joller N, Lozano E, Burkett PR, Patel B, Xiao S, Zhu C, Xia J, Tan TG, Sefik E, Yajnik V, Sharpe AH, Quintana FJ, Mathis D, Benoist C, Hafler DA, Kuchroo VK (2014) Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity 40:569–581. doi: 10.1016/j.immuni.2014.02.012 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Jung MY, Kim HS, Hong HJ, Youn BS, Kim TS (2012) Adiponectin induces dendritic cell activation via PLCgamma/JNK/NF-kappaB pathways, leading to Th1 and Th17 polarization. J Immunol 188:2592–2601. doi: 10.4049/jimmunol.1102588 PubMedCrossRefGoogle Scholar
  65. Kayaba H, Dombrowicz D, Woerly G, Papin JP, Loiseau S, Capron M (2001) Human eosinophils and human high affinity IgE receptor transgenic mouse eosinophils express low levels of high affinity IgE receptor, but release IL-10 upon receptor activation. J Immunol 167:995–1003PubMedCrossRefGoogle Scholar
  66. Kershaw EE, Flier JS (2004) Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89:2548–2556. doi: 10.1210/jc.2004-0395 PubMedCrossRefGoogle Scholar
  67. Kidd P (2003) Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Altern Med Rev 8:223–246PubMedGoogle Scholar
  68. Kim HS, Kim AR, Kim DK, Kim HW, Park YH, Jang GH, Kim B, Park YM, You JS, Kim HS, Beaven MA, Kim YM, Choi WS (2015) Interleukin-10-producing CD5+ B cells inhibit mast cells during immunoglobulin E-mediated allergic responses. Sci Signal 8:ra28. doi: 10.1126/scisignal.2005861 PubMedCrossRefGoogle Scholar
  69. Kintscher U, Hartge M, Hess K, Foryst-Ludwig A, Clemenz M, Wabitsch M, Fischer-Posovszky P, Barth TF, Dragun D, Skurk T, Hauner H, Bluher M, Unger T, Wolf AM, Knippschild U, Hombach V, Marx N (2008) T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arterioscler Thromb Vasc Biol 28:1304–1310. doi: 10.1161/ATVBAHA.108.165100 PubMedCrossRefGoogle Scholar
  70. Koenen TB, Stienstra R, van Tits LJ, de Graaf J, Stalenhoef AF, Joosten LA, Tack CJ, Netea MG (2011a) Hyperglycemia activates caspase-1 and TXNIP-mediated IL-1beta transcription in human adipose tissue. Diabetes 60:517–524. doi: 10.2337/db10-0266 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Koenen TB, Stienstra R, van Tits LJ, Joosten LA, van Velzen JF, Hijmans A, Pol JA, van der Vliet JA, Netea MG, Tack CJ, Stalenhoef AF, de Graaf J (2011b) The inflammasome and caspase-1 activation: a new mechanism underlying increased inflammatory activity in human visceral adipose tissue. Endocrinology 152:3769–3778. doi: 10.1210/en.2010-1480 PubMedCrossRefGoogle Scholar
  72. Kovacikova M, Sengenes C, Kovacova Z, Siklova-Vitkova M, Klimcakova E, Polak J, Rossmeislova L, Bajzova M, Hejnova J, Hnevkovska Z, Bouloumie A, Langin D, Stich V (2011) Dietary intervention-induced weight loss decreases macrophage content in adipose tissue of obese women. Int J Obes 35:91–98. doi: 10.1038/ijo.2010.112 CrossRefGoogle Scholar
  73. Kuzmicki M, Telejko B, Szamatowicz J, Zonenberg A, Nikolajuk A, Kretowski A, Gorska M (2009) High resistin and interleukin-6 levels are associated with gestational diabetes mellitus. Gynecol Endocrinol 25:258–263. doi: 10.1080/09513590802653825 PubMedCrossRefGoogle Scholar
  74. Lee BC, Kim MS, Pae M, Yamamoto Y, Eberle D, Shimada T, Kamei N, Park HS, Sasorith S, Woo JR, You J, Mosher W, Brady HJ, Shoelson SE, Lee J (2016) Adipose natural killer cells regulate adipose tissue macrophages to promote insulin resistance in obesity. Cell Metab 23:685–698. doi: 10.1016/j.cmet.2016.03.002 PubMedCrossRefGoogle Scholar
  75. Li W, Katz BP, Spinola SM (2012b) Haemophilus ducreyi-induced interleukin-10 promotes a mixed M1 and M2 activation program in human macrophages. Infect Immun 80:4426–4434. doi: 10.1128/IAI.00912-12 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Li P, Zhao Y, Wu X, Xia M, Fang M, Iwasaki Y, Sha J, Chen Q, Xu Y, Shen A (2012a) Interferon gamma (IFN-gamma) disrupts energy expenditure and metabolic homeostasis by suppressing SIRT1 transcription. Nucleic Acids Res 40:1609–1620. doi: 10.1093/nar/gkr984 PubMedCrossRefGoogle Scholar
  77. Liu LS, Spelleken M, Rohrig K, Hauner H, Eckel J (1998) Tumor necrosis factor-alpha acutely inhibits insulin signaling in human adipocytes: implication of the p80 tumor necrosis factor receptor. Diabetes 47:515–522PubMedCrossRefGoogle Scholar
  78. Loffreda S, Yang SQ, Lin HZ, Karp CL, Brengman ML, Wang DJ, Klein AS, Bulkley GB, Bao C, Noble PW, Lane MD, Diehl AM (1998) Leptin regulates proinflammatory immune responses. FASEB J 12:57–65PubMedGoogle Scholar
  79. Lord GM, Matarese G, Howard JK, Baker RJ, Bloom SR, Lechler RI (1998) Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 394:897–901. doi: 10.1038/29795 PubMedCrossRefGoogle Scholar
  80. Luckheeram RV, Zhou R, Verma AD, Xia B (2012) CD4(+)T cells: differentiation and functions. Clin Dev Immunol 2012:925135. doi: 10.1155/2012/925135 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Lumeng CN, Bodzin JL, Saltiel AR (2007) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117:175–184. doi: 10.1172/JCI29881 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Lutgens E, Lievens D, Beckers L, Wijnands E, Soehnlein O, Zernecke A, Seijkens T, Engel D, Cleutjens J, Keller AM, Naik SH, Boon L, Oufella HA, Mallat Z, Ahonen CL, Noelle RJ, de Winther MP, Daemen MJ, Biessen EA, Weber C (2010) Deficient CD40-TRAF6 signaling in leukocytes prevents atherosclerosis by skewing the immune response toward an antiinflammatory profile. J Exp Med 207:391–404. doi: 10.1084/jem.20091293 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Luttmann W, Matthiesen T, Matthys H, Virchow JC Jr (1999) Synergistic effects of interleukin-4 or interleukin-13 and tumor necrosis factor-alpha on eosinophil activation in vitro. Am J Respir Cell Mol Biol 20:474–480. doi: 10.1165/ajrcmb.20.3.3326 PubMedCrossRefGoogle Scholar
  84. Lynch L, Michelet X, Zhang S, Brennan PJ, Moseman A, Lester C, Besra G, Vomhof-Dekrey EE, Tighe M, Koay HF, Godfrey DI, Leadbetter EA, Sant’Angelo DB, von Andrian U, Brenner MB (2015) Regulatory iNKT cells lack expression of the transcription factor PLZF and control the homeostasis of T(reg) cells and macrophages in adipose tissue. Nat Immunol 16:85–95. doi: 10.1038/ni.3047 PubMedCrossRefGoogle Scholar
  85. Manduteanu I, Pirvulescu M, Gan AM, Stan D, Simion V, Dragomir E, Calin M, Manea A, Simionescu M (2010) Similar effects of resistin and high glucose on P-selectin and fractalkine expression and monocyte adhesion in human endothelial cells. Biochem Biophys Res Commun 391:1443–1448. doi: 10.1016/j.bbrc.2009.12.089 PubMedCrossRefGoogle Scholar
  86. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–686. doi: 10.1016/j.it.2004.09.015 PubMedCrossRefGoogle Scholar
  87. Marchetti V, Yanes O, Aguilar E, Wang M, Friedlander D, Moreno S, Storm K, Zhan M, Naccache S, Nemerow G, Siuzdak G, Friedlander M (2011) Differential macrophage polarization promotes tissue remodeling and repair in a model of ischemic retinopathy. Sci Rep 1:76. doi: 10.1038/srep00076 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6:13. doi:  10.12703/P6-13
  89. Martinez-Nunez RT, Louafi F, Sanchez-Elsner T (2011) The interleukin 13 (IL-13) pathway in human macrophages is modulated by microRNA-155 via direct targeting of interleukin 13 receptor alpha1 (IL13Ralpha1). J Biol Chem 286:1786–1794. doi: 10.1074/jbc.M110.169367 PubMedCrossRefGoogle Scholar
  90. Mastronardi CA, Yu WH, Rettori V, McCann S (2000) Lipopolysaccharide-induced leptin release is not mediated by nitric oxide, but is blocked by dexamethasone. Neuroimmunomodulation 8:91–97. doi: 26458Google Scholar
  91. McDermott MF (2001) TNF and TNFR biology in health and disease. Cell Mol Biol (Noisy-le-grand) 47:619–635Google Scholar
  92. McDonnell ME, Ganley-Leal LM, Mehta A, Bigornia SJ, Mott M, Rehman Q, Farb MG, Hess DT, Joseph L, Gokce N, Apovian CM (2012) B lymphocytes in human subcutaneous adipose crown-like structures. Obesity (Silver Spring) 20:1372–1378. doi: 10.1038/oby.2012.54 CrossRefGoogle Scholar
  93. Mestas J, Hughes CC (2004) Of mice and not men: differences between mouse and human immunology. J Immunol 172:2731–2738PubMedCrossRefGoogle Scholar
  94. Mokdad AH, Ford ES, Bowman BA, Dietz WH, Vinicor F, Bales VS, Marks JS (2003) Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA 289:76–79PubMedCrossRefGoogle Scholar
  95. Morris DL, Oatmen KE, Mergian TA, Cho KW, DelProposto JL, Singer K, Evans-Molina C, O’Rourke RW, Lumeng CN (2016) CD40 promotes MHC class II expression on adipose tissue macrophages and regulates adipose tissue CD4+ T cells with obesity. J Leukoc Biol 99:1107–1119. doi: 10.1189/jlb.3A0115-009R PubMedCrossRefGoogle Scholar
  96. Moschen AR, Kaser A, Enrich B, Mosheimer B, Theurl M, Niederegger H, Tilg H (2007) Visfatin, an adipocytokine with proinflammatory and immunomodulating properties. J Immunol 178:1748–1758PubMedCrossRefGoogle Scholar
  97. Mosig S, Rennert K, Krause S, Kzhyshkowska J, Neunubel K, Heller R, Funke H (2009) Different functions of monocyte subsets in familial hypercholesterolemia: potential function of CD14+ CD16+ monocytes in detoxification of oxidized LDL. FASEB J 23:866–874. doi: 10.1096/fj.08-118240 PubMedCrossRefGoogle Scholar
  98. Muller KM, Jaunin F, Masouye I, Saurat JH, Hauser C (1993) Th2 cells mediate IL-4-dependent local tissue inflammation. J Immunol 150:5576–5584PubMedGoogle Scholar
  99. Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, Otsu M, Hara K, Ueki K, Sugiura S, Yoshimura K, Kadowaki T, Nagai R (2009) CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med 15:914–920. doi: 10.1038/nm.1964 PubMedCrossRefGoogle Scholar
  100. Nishimura S, Manabe I, Takaki S, Nagasaki M, Otsu M, Yamashita H, Sugita J, Yoshimura K, Eto K, Komuro I, Kadowaki T, Nagai R (2013) Adipose natural regulatory B cells negatively control adipose tissue inflammation. Cell Metab doi. doi: 10.1016/j.cmet.2013.09.017 Google Scholar
  101. Nov O, Kohl A, Lewis EC, Bashan N, Dvir I, Ben-Shlomo S, Fishman S, Wueest S, Konrad D, Rudich A (2010) Interleukin-1beta may mediate insulin resistance in liver-derived cells in response to adipocyte inflammation. Endocrinology 151:4247–4256. doi: 10.1210/en.2010-0340 PubMedCrossRefGoogle Scholar
  102. Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, Red Eagle A, Vats D, Brombacher F, Ferrante AW, Chawla A (2007) Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 447:1116–1120. doi: 10.1038/nature05894 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Oh DY, Morinaga H, Talukdar S, Bae EJ, Olefsky JM (2012) Increased macrophage migration into adipose tissue in obese mice. Diabetes 61:346–354. doi: 10.2337/db11-0860 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Ohashi K, Parker JL, Ouchi N, Higuchi A, Vita JA, Gokce N, Pedersen AA, Kalthoff C, Tullin S, Sams A, Summer R, Walsh K (2010) Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype. J Biol Chem 285:6153–6160. doi: 10.1074/jbc.M109.088708 PubMedCrossRefGoogle Scholar
  105. Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y, Hotta K, Nishida M, Takahashi M, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y (1999) Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation 100:2473–2476PubMedCrossRefGoogle Scholar
  106. Papathanassoglou E, El-Haschimi K, Li XC, Matarese G, Strom T, Mantzoros C (2006) Leptin receptor expression and signaling in lymphocytes: kinetics during lymphocyte activation, role in lymphocyte survival, and response to high fat diet in mice. J Immunol 176:7745–7752PubMedCrossRefGoogle Scholar
  107. Patel L, Buckels AC, Kinghorn IJ, Murdock PR, Holbrook JD, Plumpton C, Macphee CH, Smith SA (2003) Resistin is expressed in human macrophages and directly regulated by PPAR gamma activators. Biochem Biophys Res Commun 300:472–476PubMedCrossRefGoogle Scholar
  108. Piccio L, Cantoni C, Henderson JG, Hawiger D, Ramsbottom M, Mikesell R, Ryu J, Hsieh CS, Cremasco V, Haynes W, Dong LQ, Chan L, Galimberti D, Cross AH (2013) Lack of adiponectin leads to increased lymphocyte activation and increased disease severity in a mouse model of multiple sclerosis. Eur J Immunol 43:2089–2100. doi: 10.1002/eji.201242836 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Piestrzeniewicz K, Luczak K, Komorowski J, Maciejewski M, Jankiewicz Wika J, Goch JH (2008) Resistin increases with obesity and atherosclerotic risk factors in patients with myocardial infarction. Metabolism 57:488–493. doi: 10.1016/j.metabol.2007.11.009 PubMedCrossRefGoogle Scholar
  110. Poggi M, Jager J, Paulmyer-Lacroix O, Peiretti F, Gremeaux T, Verdier M, Grino M, Stepanian A, Msika S, Burcelin R, de Prost D, Tanti JF, Alessi MC (2009) The inflammatory receptor CD40 is expressed on human adipocytes: contribution to crosstalk between lymphocytes and adipocytes. Diabetologia 52:1152–1163. doi: 10.1007/s00125-009-1267-1 PubMedCrossRefGoogle Scholar
  111. Poitou C, Dalmas E, Renovato M, Benhamo V, Hajduch F, Abdennour M, Kahn JF, Veyrie N, Rizkalla S, Fridman WH, Sautes-Fridman C, Clement K, Cremer I (2011) CD14dimCD16+ and CD14 + CD16+ monocytes in obesity and during weight loss: relationships with fat mass and subclinical atherosclerosis. Arterioscler Thromb Vasc Biol 31:2322–2330. doi: 10.1161/ATVBAHA.111.230979 PubMedCrossRefGoogle Scholar
  112. Rocha VZ, Folco EJ, Sukhova G, Shimizu K, Gotsman I, Vernon AH, Libby P (2008) Interferon-gamma, a Th1 cytokine, regulates fat inflammation: a role for adaptive immunity in obesity. Circ Res 103:467–476. doi: 10.1161/CIRCRESAHA.108.177105 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Romagnani S (1999) Th1/Th2 cells. Inflamm Bowel Dis 5:285–294PubMedCrossRefGoogle Scholar
  114. Rose S, Stansky E, Dagur PK, Samsel L, Weiner E, Jahanshad A, Doveikis J, Naik HB, Playford MP, McCoy JP, Mehta NN (2014) Characterization of immune cells in psoriatic adipose tissue. J Transl Med 12:258. doi: 10.1186/s12967-014-0258-2 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Rutschman R, Lang R, Hesse M, Ihle JN, Wynn TA, Murray PJ (2001) Cutting edge: Stat6-dependent substrate depletion regulates nitric oxide production. J Immunol 166:2173–2177PubMedCrossRefGoogle Scholar
  116. Santin AD, Hermonat PL, Ravaggi A, Bellone S, Pecorelli S, Roman JJ, Parham GP, Cannon MJ (2000) Interleukin-10 increases Th1 cytokine production and cytotoxic potential in human papillomavirus-specific CD8(+) cytotoxic T lymphocytes. J Virol 74:4729–4737PubMedPubMedCentralCrossRefGoogle Scholar
  117. Savage DB, Sewter CP, Klenk ES, Segal DG, Vidal-Puig A, Considine RV, O’Rahilly S (2001) Resistin / Fizz3 expression in relation to obesity and peroxisome proliferator-activated receptor-gamma action in humans. Diabetes 50:2199–2202PubMedCrossRefGoogle Scholar
  118. Schaffer JE (2003) Lipotoxicity: when tissues overeat. Curr Opin Lipidol 14:281–287. doi: 10.1097/01.mol.0000073508.41685.7f PubMedCrossRefGoogle Scholar
  119. Shaul ME, Bennett G, Strissel KJ, Greenberg AS, Obin MS (2010) Dynamic, M2-like remodeling phenotypes of CD11c + adipose tissue macrophages during high-fat diet--induced obesity in mice. Diabetes 59:1171–1181. doi: 10.2337/db09-1402 PubMedPubMedCentralCrossRefGoogle Scholar
  120. Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122:787–795. doi: 10.1172/JCI59643 PubMedPubMedCentralCrossRefGoogle Scholar
  121. Silswal N, Singh AK, Aruna B, Mukhopadhyay S, Ghosh S, Ehtesham NZ (2005) Human resistin stimulates the pro-inflammatory cytokines TNF-alpha and IL-12 in macrophages by NF-kappaB-dependent pathway. Biochem Biophys Res Commun 334:1092–1101. doi: 10.1016/j.bbrc.2005.06.202 PubMedCrossRefGoogle Scholar
  122. Singh VK, Mehrotra S, Agarwal SS (1999) The paradigm of Th1 and Th2 cytokines: its relevance to autoimmunity and allergy. Immunol Res 20:147–161PubMedCrossRefGoogle Scholar
  123. Slutsky N, Vatarescu M, Haim Y, Goldstein N, Kirshtein B, Harman-Boehm I, Gepner Y, Shai I, Bashan N, Bluher M, Rudich A (2016) Decreased adiponectin links elevated adipose tissue autophagy with adipocyte endocrine dysfunction in obesity. Int J Obes 40:912–920. doi: 10.1038/ijo.2016.5 CrossRefGoogle Scholar
  124. Snapper CM, Peschel C, Paul WE (1988) IFN-gamma stimulates IgG2a secretion by murine B cells stimulated with bacterial lipopolysaccharide. J Immunol 140:2121–2127PubMedGoogle Scholar
  125. Sojka DK, Fowell DJ (2011) Regulatory T cells inhibit acute IFN-gamma synthesis without blocking T-helper cell type 1 (Th1) differentiation via a compartmentalized requirement for IL-10. Proc Natl Acad Sci U S A 108:18336–18341. doi: 10.1073/pnas.1110566108 PubMedPubMedCentralCrossRefGoogle Scholar
  126. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS, Lazar MA (2001) The hormone resistin links obesity to diabetes. Nature 409:307–312. doi: 10.1038/35053000 PubMedCrossRefGoogle Scholar
  127. Sun X, Casbas-Hernandez P, Bigelow C, Makowski L, Joseph Jerry D, Smith Schneider S, Troester MA (2012) Normal breast tissue of obese women is enriched for macrophage markers and macrophage-associated gene expression. Breast Cancer Res Treat 131:1003–1012. doi: 10.1007/s10549-011-1789-3 PubMedCrossRefGoogle Scholar
  128. Szamel M, Rehermann B, Krebs B, Kurrle R, Resch K (1989) Activation signals in human lymphocytes. Incorporation of polyunsaturated fatty acids into plasma membrane phospholipids regulates IL-2 synthesis via sustained activation of protein kinase C. J Immunol 143:2806–2813PubMedGoogle Scholar
  129. Tang Q, Henriksen KJ, Bi M, Finger EB, Szot G, Ye J, Masteller EL, McDevitt H, Bonyhadi M, Bluestone JA (2004) In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med 199:1455–1465. doi: 10.1084/jem.20040139 PubMedPubMedCentralCrossRefGoogle Scholar
  130. Tencerova M, Kracmerova J, Krauzova E, Malisova L, Kovacova Z, Wedellova Z, Siklova M, Stich V, Rossmeislova L (2015) Experimental hyperglycemia induces an increase of monocyte and T-lymphocyte content in adipose tissue of healthy obese women. PLoS One 10:e0122872. doi: 10.1371/journal.pone.0122872 PubMedPubMedCentralCrossRefGoogle Scholar
  131. Tiemessen MM, Jagger AL, Evans HG, van Herwijnen MJ, John S, Taams LS (2007) CD4 + CD25 + Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc Natl Acad Sci U S A 104:19446–19451. doi: 10.1073/pnas.0706832104 PubMedPubMedCentralCrossRefGoogle Scholar
  132. Tourniaire F, Romier-Crouzet B, Lee JH, Marcotorchino J, Gouranton E, Salles J, Malezet C, Astier J, Darmon P, Blouin E, Walrand S, Ye J, Landrier JF (2013) Chemokine expression in inflamed adipose tissue is mainly mediated by NF-kappaB. PLoS One 8:e66515. doi: 10.1371/journal.pone.0066515 PubMedPubMedCentralCrossRefGoogle Scholar
  133. Travers RL, Motta AC, Betts JA, Bouloumie A, Thompson D (2015) The impact of adiposity on adipose tissue-resident lymphocyte activation in humans. Int J Obes 39:762–769. doi: 10.1038/ijo.2014.195 CrossRefGoogle Scholar
  134. Utzschneider KM, Carr DB, Tong J, Wallace TM, Hull RL, Zraika S, Xiao Q, Mistry JS, Retzlaff BM, Knopp RH, Kahn SE (2005) Resistin is not associated with insulin sensitivity or the metabolic syndrome in humans. Diabetologia 48:2330–2333. doi: 10.1007/s00125-005-1932-y PubMedCrossRefGoogle Scholar
  135. van den Berg SM, Seijkens TT, Kusters PJ, Zarzycka B, Beckers L, den Toom M, Gijbels MJ, Chatzigeorgiou A, Weber C, de Winther MP, Chavakis T, Nicolaes GA, Lutgens E (2015) Blocking CD40-TRAF6 interactions by small-molecule inhibitor 6860766 ameliorates the complications of diet-induced obesity in mice. Int J Obes 39:782–790. doi: 10.1038/ijo.2014.198 CrossRefGoogle Scholar
  136. van Hamburg JP, de Bruijn MJ, Ribeiro de Almeida C, van Zwam M, van Meurs M, de Haas E, Boon L, Samsom JN, Hendriks RW (2008) Enforced expression of GATA3 allows differentiation of IL-17-producing cells, but constrains Th17-mediated pathology. Eur J Immunol 38:2573–2586. doi: 10.1002/eji.200737840 PubMedCrossRefGoogle Scholar
  137. Veilleux A, Caron-Jobin M, Noel S, Laberge PY, Tchernof A (2011) Visceral adipocyte hypertrophy is associated with dyslipidemia independent of body composition and fat distribution in women. Diabetes 60:1504–1511. doi: 10.2337/db10-1039 PubMedPubMedCentralCrossRefGoogle Scholar
  138. Vicente R, Coma M, Busquets S, Moore-Carrasco R, Lopez-Soriano FJ, Argiles JM, Felipe A (2004) The systemic inflammatory response is involved in the regulation of K(+) channel expression in brain via TNF-alpha-dependent and -independent pathways. FEBS Lett 572:189–194. doi: 10.1016/j.febslet.2004.07.030 PubMedCrossRefGoogle Scholar
  139. Vogel DY, Glim JE, Stavenuiter AW, Breur M, Heijnen P, Amor S, Dijkstra CD, Beelen RH (2014) Human macrophage polarization in vitro: maturation and activation methods compared. Immunobiology 219:695–703. doi: 10.1016/j.imbio.2014.05.002 PubMedCrossRefGoogle Scholar
  140. Vozarova de Courten B, Degawa-Yamauchi M, Considine RV, Tataranni PA (2004) High serum resistin is associated with an increase in adiposity but not a worsening of insulin resistance in pima Indians. Diabetes 53:1279–1284PubMedCrossRefGoogle Scholar
  141. Wang H, Mizuno R, Ohhashi T (1997) Macrophage-induced nitric oxide and prostanoid dependent relaxation of arterial smooth muscles. Can J Physiol Pharmacol 75:789–795PubMedCrossRefGoogle Scholar
  142. Wensveen FM, Jelencic V, Valentic S, Sestan M, Wensveen TT, Theurich S, Glasner A, Mendrila D, Stimac D, Wunderlich FT, Bruning JC, Mandelboim O, Polic B (2015) NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nat Immunol 16:376–385. doi: 10.1038/ni.3120 PubMedCrossRefGoogle Scholar
  143. Winer S, Chan Y, Paltser G, Truong D, Tsui H, Bahrami J, Dorfman R, Wang Y, Zielenski J, Mastronardi F, Maezawa Y, Drucker DJ, Engleman E, Winer D, Dosch HM (2009) Normalization of obesity-associated insulin resistance through immunotherapy. Nat Med 15:921–929. doi: 10.1038/nm.2001 PubMedPubMedCentralCrossRefGoogle Scholar
  144. Winer DA, Winer S, Shen L, Wadia PP, Yantha J, Paltser G, Tsui H, Wu P, Davidson MG, Alonso MN, Leong HX, Glassford A, Caimol M, Kenkel JA, Tedder TF, McLaughlin T, Miklos DB, Dosch HM, Engleman EG (2011) B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat Med 17:610–617. doi: 10.1038/nm.2353 PubMedPubMedCentralCrossRefGoogle Scholar
  145. Winkler G, Kiss S, Keszthelyi L, Sapi Z, Ory I, Salamon F, Kovacs M, Vargha P, Szekeres O, Speer G, Karadi I, Sikter M, Kaszas E, Dworak O, Gero G, Cseh K (2003) Expression of tumor necrosis factor (TNF)-alpha protein in the subcutaneous and visceral adipose tissue in correlation with adipocyte cell volume, serum TNF-alpha, soluble serum TNF-receptor-2 concentrations and C-peptide level. Eur J Endocrinol 149:129–135PubMedCrossRefGoogle Scholar
  146. Wolf AM, Wolf D, Rumpold H, Enrich B, Tilg H (2004) Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes. Biochem Biophys Res Commun 323:630–635. doi: 10.1016/j.bbrc.2004.08.145 PubMedCrossRefGoogle Scholar
  147. Wortis HH, Teutsch M, Higer M, Zheng J, Parker DC (1995) B-cell activation by crosslinking of surface IgM or ligation of CD40 involves alternative signal pathways and results in different B-cell phenotypes. Proc Natl Acad Sci U S A 92:3348–3352PubMedPubMedCentralCrossRefGoogle Scholar
  148. Wu H, Ghosh S, Perrard XD, Feng L, Garcia GE, Perrard JL, Sweeney JF, Peterson LE, Chan L, Smith CW, Ballantyne CM (2007) T-cell accumulation and regulated on activation, normal T cell expressed and secreted upregulation in adipose tissue in obesity. Circulation 115:1029–1038. doi: 10.1161/CIRCULATIONAHA.106.638379 PubMedCrossRefGoogle Scholar
  149. Xu W, Roos A, Schlagwein N, Woltman AM, Daha MR, van Kooten C (2006a) IL-10-producing macrophages preferentially clear early apoptotic cells. Blood 107:4930–4937. doi: 10.1182/blood-2005-10-4144 PubMedCrossRefGoogle Scholar
  150. Xu W, Yu L, Zhou W, Luo M (2006b) Resistin increases lipid accumulation and CD36 expression in human macrophages. Biochem Biophys Res Commun 351:376–382. doi: 10.1016/j.bbrc.2006.10.051 PubMedCrossRefGoogle Scholar
  151. Yadav A, Kataria MA, Saini V, Yadav A (2013) Role of leptin and adiponectin in insulin resistance. Clin Chim Acta 417:80–84. doi: 10.1016/j.cca.2012.12.007 PubMedCrossRefGoogle Scholar
  152. Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman ML, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T (2001) The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 7:941–946. doi: 10.1038/90984 PubMedCrossRefGoogle Scholar
  153. Yang WS, Lee WJ, Funahashi T, Tanaka S, Matsuzawa Y, Chao CL, Chen CL, Tai TY, Chuang LM (2001) Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin. J Clin Endocrinol Metab 86:3815–3819. doi: 10.1210/jcem.86.8.7741 PubMedCrossRefGoogle Scholar
  154. Yang J, Zhang L, Yu C, Yang XF, Wang H (2014) Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res 2:1. doi: 10.1186/2050-7771-2-1 PubMedPubMedCentralCrossRefGoogle Scholar
  155. Ye J, Gao Z, Yin J, He Q (2007) Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of Ob/Ob and dietary obese mice. Am J Physiol Endocrinol Metab 293:E1118–E1128. doi: 10.1152/ajpendo.00435.2007 PubMedCrossRefGoogle Scholar
  156. Yi Z, Stunz LL, Bishop GA (2014) CD40-mediated maintenance of immune homeostasis in the adipose tissue microenvironment. Diabetes 63:2751–2760. doi: 10.2337/db13-1657 PubMedPubMedCentralCrossRefGoogle Scholar
  157. Zeng C, Shi X, Zhang B, Liu H, Zhang L, Ding W, Zhao Y (2012) The imbalance of Th17/Th1/Tregs in patients with type 2 diabetes: relationship with metabolic factors and complications. J Mol Med (Berl) 90:175–186. doi: 10.1007/s00109-011-0816-5 CrossRefGoogle Scholar
  158. Zeyda M, Farmer D, Todoric J, Aszmann O, Speiser M, Gyori G, Zlabinger GJ, Stulnig TM (2007) Human adipose tissue macrophages are of an anti-inflammatory phenotype but capable of excessive pro-inflammatory mediator production. Int J Obes 31:1420–1428. doi: 10.1038/sj.ijo.0803632 CrossRefGoogle Scholar
  159. Zhai Y, Ghobrial RM, Busuttil RW, Kupiec-Weglinski JW (1999) Th1 and Th2 cytokines in organ transplantation: paradigm lost? Crit Rev Immunol 19:155–172PubMedGoogle Scholar
  160. Zheng C, Yang Q, Cao J, Xie N, Liu K, Shou P, Qian F, Wang Y, Shi Y (2016) Local proliferation initiates macrophage accumulation in adipose tissue during obesity. Cell Death Dis 7:e2167. doi: 10.1038/cddis.2016.54 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • Anna Cinkajzlová
    • 1
    • 2
  • Miloš Mráz
    • 1
    • 3
  • Martin Haluzík
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of MedicineCharles University in Prague and General University HospitalPragueCzech Republic
  2. 2.Centre of Experimental MedicineInstitute for Clinical and Experimental MedicinePragueCzech Republic
  3. 3.Diabetes CentreInstitute for Clinical and Experimental MedicinePragueCzech Republic
  4. 4.Department of ObesitologyInstitute of EndocrinologyPragueCzech Republic

Personalised recommendations