, Volume 254, Issue 4, pp 1805–1811 | Cite as

Analysis of the shapes of coelomocytes of Aphelasterias japonica in vitro (Echinodermata: Asteroidea)

  • Yu KaretinEmail author
  • II Pushchin
Original Article


A description and formal classification of in vitro spreading coelomocytes from the Aphelasterias japonica sea star was performed using 39 parameters of linear and nonlinear morphometry based on the correlation, factor, and cluster analysis. The comparison of a variety of clustering models revealed the optimum classification parameters and algorithms. As a result, four morphological types of spreading cells significantly differing in a number of structural parameters were identified. This approach may be an important alternative or addition to classical methods of classification of polymorphic, irregularly shaped cells, in particular, cell elements of the invertebrate immune system. It provides the optimum methodology for structural analysis and classification of cells as a part of their further investigation in terms of structure, function, ontogeny, and diversity.


Aphelasterias japonica Coelomocytes Morphometry Fractal analysis Classification Cluster analysis 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

709_2017_1078_MOESM1_ESM.doc (52 kb)
ESM 1 (DOC 52 kb)
709_2017_1078_MOESM2_ESM.doc (2.8 mb)
ESM 2 (DOC 2876 kb)


  1. Boschek CB, Jockusch BM, Friis RR, Back R, Grundmann E, Bauer H (1981) Early changes in the distribution and organization of microfilament proteins during cell transformation. Cell 24(1):175–184. doi: 10.1016/0092-8674(81)90513-4 CrossRefPubMedGoogle Scholar
  2. Brock G, Pihur V, Datta S, Datta S (2008) clValid: an R package for cluster validation. J Stat Software 25:1–22. doi: 10.18637/jss.v025.i04 CrossRefGoogle Scholar
  3. Chiang AS, Gupta AP, Han SS (1988) Arthropod immune system: I. Comparative light and electron microscopic accounts of immunocytes and other hemocytes of Blattella germanica (Dictyoptera: Blattellidae). J Morphol 198(3):257–267. doi: 10.1002/jmor.1051980302 CrossRefGoogle Scholar
  4. Costello AB, Osborne LW (2005) Best practices in exploratory factor analysis: four recommendations for getting the most from your analysis. Practical Assessment, Research and Evaluation 10(7):1–9 Google Scholar
  5. Dokukin ME, Guz NV, Woodworth CD, Sokolov I (2015) Emergence of fractal geometry on the surface of human cervical epithelial cells during progression towards cancer. New J Phys 17:033019. doi: 10.1088/1367-2630/17/3/033019 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Fisher WS (1986) Structure and functions of oyster hemocytes. In: Dr Brehélin M (ed) Immunity in invertebrates. Springer Verlag, Berlin, pp 25–35 ISBN: 978-3-642-70770-4CrossRefGoogle Scholar
  7. González J, Gamundi A, Rial R, Nicolau MC, de Vera L, Pereda E (1999) Nonlinear, fractal, and spectral analysis of the EEG of lizard, Gallotia galloti. Am J Physiol Regul Integr Comp Physiol 277(1):R86–R93 pmid: 10409261 Google Scholar
  8. Gordon AD (1999) Classification, 2nd edn. Chapman and Hall/CRC, Washington DC ISBN 9781584880134Google Scholar
  9. Hine PM (1999) The inter-relationship of bivalve haemocytes. Fish & Shellfish Immunology 9:367–385. doi: 10.1006/fsim.1998.0205 CrossRefGoogle Scholar
  10. Kanungo K (1984) The coelomocytes of asteroid echinoderms. In: Cheng TC (ed) Comparative pathobiology. Volume 6. Invertebrate blood. cells and serum factors. Springer, US, pp. 7–39. ISBN: 978–1–4684-4768-2. doi:  10.1007/978-1-4684-4766-8
  11. Karetin YA (2016) Nonlinear analysis of hemocyte morphology in the sea stars Aphelasterias japonica (Bell, 1881), Patiria Pectinifera (Muller et Troschel, 1842), and the bivalve Callista brevisiphonata (Carpenter, 1864). Russ J Mar Biol 42(4):275–282CrossRefGoogle Scholar
  12. Karetin YA, Pushchin II (2015) Analysis of the shapes of hemocytes of Callista brevisiphonata in vitro (Bivalvia, Veneridae). Cytometry A 87(8):773–776. doi: 10.1002/cyto.a.22676 CrossRefPubMedGoogle Scholar
  13. Kaufman L, Rousseeuw PJ (1990) Finding groups in data: an introduction to cluster analysis. John Wiley & Sons, New York ISBN 0-47 1-73578-7CrossRefGoogle Scholar
  14. Kurtz J (2002) Phagocytosis by invertebrate hemocytes: causes of individual variation in Panorpa vulgaris scorpion flies. Microsc Res Tech 57(6):456–468. doi: 10.1002/jemt.10099 CrossRefPubMedGoogle Scholar
  15. Li BL (2000) Fractal geometry applications in description and analysis of patch patterns and patch dynamics. Ecol Mod 132(1–2):33–50. doi: 10.1016/S0304-3800(00)00303-3 CrossRefGoogle Scholar
  16. Marchisio PC, Capasso O, Nitsch L, Cancedda R, Gionti E (1984) Cytoskeleton and adhesion patterns of cultured chick embryo chondrocytes during cell spreading and Rous sarcoma virus transformation. Exp Cell Res 151(2):332–343. doi: 10.1016/0014-4827(84)90384-7 CrossRefPubMedGoogle Scholar
  17. Martin GG, Hose JE (1992) Vascular elements and blood (hemolymph). Microscopic Anatomy of Invertebrates 10:117–146Google Scholar
  18. Pushchin II, Karetin Y (2009) Retinal ganglion cells in the eastern newt Notophthalmus viridescens: topography, morphology, and diversity. J Comp Neurol 516(6):533–552. doi: 10.1002/cne.22127 CrossRefPubMedGoogle Scholar
  19. Pushchin I, Karetin Y (2014) Retinal ganglion cells in the Pacific redfin, Tribolodon brandtii dybowski, 1872: morphology and diversity. J Comp Neurol 522(6):1355–1372. doi: 10.1002/cne.23489 CrossRefPubMedGoogle Scholar
  20. Scapigliatia G, Mazzinia M (1994) In vivo and in vitro phagocytosis by hemocytes of the stick insect Bacillus rossius. Bolletino di zoologia 61(2):115–120. doi: 10.1080/11250009409355869 CrossRefGoogle Scholar
  21. Schweitzer L, Renehan WE (1997) The use of cluster analysis for cell typing. Brain Res Protocol 1:100–108. doi: 10.1016/s1385-299x(96)00014-1 CrossRefGoogle Scholar
  22. Soares T, Cavalcanti MG, Ferreira FR, Cavalcanti Mdo S, Alves LC, Brayner FA, Paiva PM (2013) Ultrastructural characterization of the hemocytes of Lasiodora sp. (Koch, 1850) (Araneae: Theraphosidae). Micron 48:11–16. doi: 10.1016/j.micron.2013.02.002 CrossRefPubMedGoogle Scholar
  23. Stoepler TM, Castillo JC, Lill JT, Eleftherianos I (2013) Hemocyte density increases with developmental stage in an immune-challenged Forest Caterpillar. PLoS One 8(8):e70978. doi: 10.1371/journal.pone.0070978 pmcid: pmc3735507 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Tee YH, Shemesh T, Thiagarajan V, Hariadi RF, Anderson KL, Page C, Volkmann N, Hanein D, Sivaramakrishnan S, Kozlov MM, Bershadsky AD (2015) Cellular chirality arising from the self-organization of the actin cytoskeleton. Nat Cell Biol 17:445–457. doi: 10.1038/ncb3137 CrossRefPubMedGoogle Scholar
  25. Überla K (1971) Faktorenanalyse. Springer-Verlag, Berlin, Heidelberg. doi: 10.1007/978-3-642-61985-4 CrossRefGoogle Scholar
  26. Vignaud T, Blanchoin L, Théryemail M (2012) Directed cytoskeleton self-organization. Trends Cell Biol 22(12):671–682. doi: 10.1016/j.tcb.2012.08.012 CrossRefPubMedGoogle Scholar
  27. Voroshilov AS, Meigal AY (2011) The nonlinear parameters of an interference electromyogram in two-day-old human newborns. Hum Physiol 37(3):283–290. doi: 10.1134/S0362119711020216 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.School of Natural Sciences, Department of Cell Biology and GeneticsFar Eastern Federal UniversityVladivostokRussia
  2. 2.A.V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of SciencesVladivostokRussia

Personalised recommendations