, Volume 254, Issue 3, pp 1143–1150 | Cite as

Intercellular crosstalk in human malignant melanoma

  • Barbora Dvořánková
  • Pavol Szabo
  • Ondřej Kodet
  • Hynek Strnad
  • Michal Kolář
  • Lukáš Lacina
  • Eliška Krejčí
  • Ondřej Naňka
  • Aleksi Šedo
  • Karel SmetanaJr.
Review Article


Incidence of malignant melanoma is increasing globally. While the initial stages of tumors can be easily treated by a simple surgery, the therapy of advanced stages is rather limited. Melanoma cells spread rapidly through the body of a patient to form multiple metastases. Consequently, the survival rate is poor. Therefore, emphasis in melanoma research is given on early diagnosis and development of novel and more potent therapeutic options. The malignant melanoma is arising from melanocytes, cells protecting mitotically active keratinocytes against damage caused by UV light irradiation. The melanocytes originate in the neural crest and consequently migrate to the epidermis. The relationship between the melanoma cells, the melanocytes, and neural crest stem cells manifests when the melanoma cells are implanted to an early embryo: they use similar migratory routes as the normal neural crest cells. Moreover, malignant potential of these melanoma cells is overdriven in this experimental model, probably due to microenvironmental reprogramming. This observation demonstrates the crucial role of the microenvironment in melanoma biology. Indeed, malignant tumors in general represent complex ecosystems, where multiple cell types influence the growth of genetically mutated cancer cells. This concept is directly applicable to the malignant melanoma. Our review article focuses on possible strategies to modify the intercellular crosstalk in melanoma that can be employed for therapeutic purposes.


Melanocyte Melanoma cells Melanoma ecosystem Cancer-associated fibroblast Keratinocyte Cytokine 



This publication is a result of the project implementation: “The equipment for metabolomic and cell analyses,” registration number CZ.1.05/2.1.00/19.0400, supported by Research and Development for Innovations Operational Program (RDIOP) co-financed by European regional development fund and the state budget of the Czech Republic. This study was also supported by the Grant Agency of the Czech Republic (project no. 16-05534S), Charles University (project of Specific University Research and PRVOUK-27 and UNCE 204013), Ministry of Education, Youth and Sports of CR within the National Sustainability Program II (project BIOCEV-FAR reg. no. LQ1604), and project BIOCEV (CZ.1.05/1.1.00/02.0109). Access to computing and storage facilities owned by parties and projects contributing to the National Grid Infrastructure MetaCentrum provided under the program “Projects of Projects of Large Research, Development, and Innovations Infrastructures” (CESNET LM2015042) is greatly appreciated.

Compliance of ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. Abbott DE, Bailey CM, Postovit LM, Seftor EA, Margaryan N, Seftor RE, Hendrix MJ (2008) The epigenetic influence of tumor and embryonic microenvironments: how different are they? Cancer Microenviron 1:13–21. doi: 10.1007/s12307-008-0004-5 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alamodi AA, Eshaq AM, Hassan SY, Al Hmada Y, El Jamal SM, Fothan AM, Arain OM, Hassan SL, Haikel Y, Megahed M, Hassan M (2016) Cancer stem cell as therapeutic target for melanoma treatment. Histol Histopathol 31(12):1291–1301. doi: 10.14670/HH-11-791 PubMedGoogle Scholar
  3. Anderberg C, Li H, Fredriksson L, Andrae J, Betsholtz C, Li X, Eriksson U, Pietras K (2009) Paracrine signaling by platelet-derived growth factor-CC promotes tumor growth by recruitment of cancer-associated fibroblasts. Cancer Res 69:369–378. doi: 10.1158/0008-5472.CAN-08-2724 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bailey CM, Morrison JA, Kulesa PM (2012) Melanoma revives an embryonic migration program to promote plasticity and invasion. Pigment Cell Melanoma Res 25:573–583. doi: 10.1111/j.1755-148X.2012.01025.x CrossRefPubMedPubMedCentralGoogle Scholar
  5. Birbrair A, Frenette PS (2016) Niche heterogeneity in the bone marrow. Ann N Y Acad Sci 1370:82–96. doi: 10.1111/nyas.13016 CrossRefPubMedGoogle Scholar
  6. Boiko AD, Razorenova OV, van de Rijn M, Swetter SM, Johnson DL, Ly DP, Butler PD, Yang GP, Joshua B, Kaplan MJ, Longaker MT, Weissman IL (2010) Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature 466:133–137. doi: 10.1038/nature09161 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Busek P, Balaziova E, Matrasova I, Hilser M, Tomas R, Syrucek M, Zemanova Z, Krepela E, Belacek J, Sedo A (2016) Fibroblast activation protein alpha is expressed by transformed and stromal cells and is associated withmesenchymal features in glioblastoma. Tumour Biol. doi: 10.1007/s13277-016-5274-9
  8. Carnero A, Garcia-Mayea Y, Mir C, Lorente J, Rubio IT, LLeonart ME (2016) The cancer stem-cell signaling network and resistance to therapy. Cancer Treat Rev 49:25–36. doi: 10.1016/j.ctrv.2016.07.001 CrossRefPubMedGoogle Scholar
  9. Chang CY, Pasolli HA, Giannopoulou EG, Guasch G, Gronostajski RM, Elemento O, Fuchs E (2013) NFIB is a governor of epithelial-melanocyte stem cell behaviour in a shared niche. Nature 495:98–102. doi: 10.1038/nature11847 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Choi HR, Byun SY, Kwon SH, Park KC (2015) Niche interactions in epidermal stem cells. World J Stem Cells 26:495–501. doi: 10.4252/wjsc.v7.i2.495 CrossRefGoogle Scholar
  11. Chung H, Suh EK, Han IO, Oh ES (2011) Keratinocyte-derived laminin-332 promotes adhesion and migration in melanocytes and melanoma. J Biol Chem 286:13438–13447. doi: 10.1074/jbc.M110.166751 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Clavreul A, Guette C, Faguer R, Tétaud C, Boissard A, Lemaire L, Rousseau A, Avril T, Henry C, Coqueret O, Menei P (2014) Glioblastoma-associated stromal cells (GASCs) from histologically normal surgical margins have a myofibroblast phenotype and angiogenic properties. J Pathol 233:74–88. doi: 10.1002/path.4332 CrossRefPubMedGoogle Scholar
  13. Colombo S, Berlin I, Delmas V, Larue L (2011) Classical and nonclassical melanocytes in vertebrates. In: Borovanský J, Riley PA (eds) Melanins and melanosomes. Biosynthesis, biogenesis, physiological and pathological functions. Wiley-Blackwell, Weinhem, pp 21–61CrossRefGoogle Scholar
  14. Díez-Torre A, Andrade R, Eguizábal C, López E, Arluzea J, Silió M, Aréchaga J (2009) Reprogramming of melanoma cells by embryonic microenvironments. Int J Dev Biol 53:1563–1568. doi: 10.1387/ijdb.093021ad CrossRefPubMedGoogle Scholar
  15. Drunkenmölle E, Marsch WC, Lübbe D, Helmbold P (2005) Paratumoral epidermal hyperplasia: a novel prognostic factor in thick primary melanoma of the skin? Am J Dermatopathol 27:482–488CrossRefPubMedGoogle Scholar
  16. Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315:1650–1659CrossRefPubMedGoogle Scholar
  17. Dvořánková B, Szabo P, Lacina L, Gal P, Uhrova J, Zima T, Kaltner H, André S, Gabius HJ, Sykova E, Smetana K Jr (2011) Human galectins induce conversion of dermal fibroblasts into myofibroblasts and production of extracellular matrix: potential application in tissue engineering and wound repair. Cells Tissues Organs 194:469–480. doi: 10.1159/000324864 CrossRefPubMedGoogle Scholar
  18. Dvořánková B, Szabo P, Lacina L, Kodet O, Matoušková E, Smetana K Jr (2012) Fibroblasts prepared from different types of malignant tumors stimulate expression of luminal marker keratin 8 in the EM-G3 breast cancer cell line. Histochem Cell Biol 137:679–685. doi: 10.1007/s00418-012-0918-3 CrossRefPubMedGoogle Scholar
  19. Dvořánková B, Smetana K Jr, Říhová B, Kučera J, Mateu R, Szabo P (2015) Cancer-associated fibroblasts are not formed from cancer cells by epithelial-to-mesenchymal transition in nu/nu mice. Histochem Cell Biol 143:463–469. doi: 10.1007/s00418-014-1293-z CrossRefPubMedGoogle Scholar
  20. El-Khattouti A, Selimovic D, Haïkel Y, Megahed M, Gomez CR, Hassan M (2014) Identification and analysis of CD133(+) melanoma stem-like cells conferring resistance to taxol: an insight into the mechanisms of their resistance and response. Cancer Lett 343:123–133. doi: 10.1016/j.canlet.2013.09.024 CrossRefPubMedGoogle Scholar
  21. El-Khattouti A, Sheehan NT, Monico J, Drummond HA, Haikel Y, Brodell RT, Megahed M, Hassan M (2015) CD133+ melanoma subpopulation acquired resistance to caffeic acid phenethyl ester-induced apoptosis is attributed to the elevated expression of ABCB5: significance for melanoma treatment. Cancer Lett 357:83–104. doi: 10.1016/j.canlet.2014.10.043 CrossRefPubMedGoogle Scholar
  22. Gilbert SF (2000) The central nervous system and the epidermis. Developmental Biology. Sinauer Associates, Sunderland, pp 379–410Google Scholar
  23. Global Burden of Disease Cancer Collaboration et al (2015) The global burden of cancer 2013. JAMA Oncol 1:505–527. doi: 10.1001/jamaoncol.2015.0735 CrossRefGoogle Scholar
  24. Haass NK, Herlyn M (2005) Normal human melanocyte homeostasis as a paradigm for understanding melanoma. J Investig Dermatol Symp Proc 10:153–163CrossRefPubMedGoogle Scholar
  25. Haass NK, Smalley KS, Herlyn M (2004) The role of altered cell-cell communication in melanoma progression. J Mol Histol 35:309–318CrossRefPubMedGoogle Scholar
  26. Hall BK (2008) The neural crest and neural crest cells: discovery and significance for theories of embryonic organization. J Biosci 33:781–793CrossRefPubMedGoogle Scholar
  27. Hamburger AW, Salmon SE (1977) Primary bioassay of human tumor stem cells. Science 197:461–463CrossRefPubMedGoogle Scholar
  28. Harries M, Malvehy J, Lebbe C, Heron L, Amelio J, Szabo Z, Schadendorf D (2016) Treatment patterns of advanced malignant melanoma (stage III-IV)—a review of current standards in Europe. Eur J Cancer 60:179–189. doi: 10.1016/j.ejca.2016.01.011 CrossRefPubMedGoogle Scholar
  29. Hendrix MJ, Seftor EA, Seftor RE, Kasemeier-Kulesa J, Kulesa PM, Postovit LM (2007) Reprogramming metastatic tumour cells with embryonic microenvironments. Nat Rev Cancer 7:246–255CrossRefPubMedGoogle Scholar
  30. Higgins HW 2nd, Lee KC, Galan A, Leffell DJ (2015) Melanoma in situ: Part I. Epidemiology, screening, and clinical features. J Am Acad Dermatol 73:181–190. doi: 10.1016/j.jaad.2015.04.014 CrossRefPubMedGoogle Scholar
  31. Hoeller C, Michielin O, Ascierto PA, Szabo Z, Blank CU (2016) Systematic review of the use of granulocyte-macrophage colony-stimulating factor in patients with advanced melanoma. Cancer Immunol Immunother 65:1015–1034. doi: 10.1007/s00262-016-1860-3 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jahoda CA, Horne KA, Oliver RF (1984) Induction of hair growth by implantation of cultured dermal papilla cells. Nature 311:560–562CrossRefPubMedGoogle Scholar
  33. Jarkovska K, Dvorankova B, Halada P, Kodet O, Szabo P, Gadher SJ, Motlik J, Kovarova H, Smetana K Jr (2014) Revelation of fibroblast protein commonalities and differences and their possible roles in wound healing and tumourigenesis using co-culture models of cells. Biol Cell 106(7):203–218. doi: 10.1111/boc.201400014 CrossRefPubMedGoogle Scholar
  34. Jobe NP, Rösel D, Dvořánková B, Kodet O, Lacina L, Mateu R, Smetana K Jr, Brábek J (2016) Simultaneous blocking of IL-6 and IL-8 is sufficient to fully inhibit CAF-induced human melanoma cell invasiveness. Histochem Cell Biol 146:205–217. doi: 10.1007/s00418-016-1433-8 CrossRefPubMedGoogle Scholar
  35. Kan S, Konishi E, Arita T, Ikemoto C, Takenaka H, Yanagisawa A, Katoh N, Asai J (2014) Podoplanin expression in cancer-associated fibroblasts predicts aggressive behavior inmelanoma. J Cutan Patho 41:561–567. doi: 10.1111/cup.12322 CrossRefGoogle Scholar
  36. Kareva I (2011) What can ecology teach us about cancer? Transl Oncol 4:266–270CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kasemeier-Kulesa JC, Teddy JM, Postovit LM, Seftor EA, Seftor RE, Hendrix MJ, Kulesa PM (2008) Reprogramming multipotent tumor cells with the embryonic neural crest microenvironment. Dev Dyn 237:2657–2566. doi: 10.1002/dvdy.21613 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kim MO, Kim SH, Oi N, Lee MH, Yu DH, Kim DJ, Cho EJ, Bode AM, Cho YY, Bowden TG, Dong Z (2011) Embryonic stem-cell-preconditioned microenvironment induces loss of cancer cell properties in human melanoma cells. Pigment Cell Melanoma Res 24:922–931. doi: 10.1111/j.1755-148X.2011.00891.x CrossRefPubMedGoogle Scholar
  39. Kodet O, Dvořánková B, Krejčí E, Szabo P, Dvořák P, Štork J, Krajsová I, Dundr P, Smetana K Jr, Lacina L (2013) Cultivation-dependent plasticity of melanoma phenotype. Tumour Biol 34:3345–3355. doi: 10.1007/s13277-013-0905-x CrossRefPubMedGoogle Scholar
  40. Kodet O, Lacina L, Krejčí E, Dvořánková B, Grim M, Štork J, Kodetová D, Vlček Č, Šáchová J, Kolář M, Strnad H, Smetana K (2015) Melanoma cells influence the differentiation pattern of human epidermal keratinocytes. Mol Cancer 14:1. doi: 10.1186/1476-4598-14-1 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kolář M, Szabo P, Dvořánková B, Lacina L, Gabius HJ, Strnad H, Sáchová J, Vlček C, Plzák J, Chovanec M, Cada Z, Betka J, Fík Z, Pačes J, Kovářová H, Motlík J, Jarkovská K, Smetana K Jr (2012) Upregulation of IL-6, IL-8 and CXCL-1 production in dermal fibroblasts by normal/malignant epithelial cells in vitro: immunohistochemical and transcriptomic analyses. Biol Cell 104:738–751. doi: 10.1111/boc.201200018 CrossRefPubMedGoogle Scholar
  42. Krejčí E, Grim M (2010) Isolation and characterization of neural crest stem cells from adult human hair follicles. Folia Biol 56:149–157Google Scholar
  43. Krejčí E, Dvořánková B, Szabo P, Naňka O, Strnad H, Kode O, Lacina L, Kolář M, Smetana K Jr (2016) Fibroblasts as drivers of healing and cancer progression: from in vitro experiments to clinics. In: Taihao Q (ed) Molecular mechanisms of skin aging and age-related diseases. CRC Press, Boca Raton, pp 121–137CrossRefGoogle Scholar
  44. Kucera R, Treskova I, Vrzalova J, Svobodova S, Topolcan O, Fuchsova R, Rousarova M, Treska V, Kydlicek T (2014) Evaluation of IGF1 serum levels in malignant melanoma and healthy subjects. Anticancer Res 34:5217–5220PubMedGoogle Scholar
  45. Kučera J, Dvořánková B, Smetana K Jr, Szabo P, Kodet O (2015) Fibroblasts isolated from the malignant melanoma influence phenotype of normal human keratinocytes. J Appl Biomed 13:195–198CrossRefGoogle Scholar
  46. Kulesa PM, Kasemeier-Kulesa JC, Teddy JM, Margaryan NV, Seftor EA, Seftor RE, Hendrix MJ (2006) Reprogramming metastatic melanoma cells to assume a neural crest cell-like phenotype in an embryonic microenvironment. Proc Natl Acad Sci U S A 103:3752–3757CrossRefPubMedPubMedCentralGoogle Scholar
  47. Kulesa PM, Morrison JA, Bailey CM (2013) The neural crest and cancer: a developmental spin on melanoma. Cells Tissues Organs 198:12–21. doi: 10.1159/000348418 CrossRefPubMedGoogle Scholar
  48. Lacina L, Plzak J, Kodet O, Szabo P, Chovanec M, Dvorankova B, Smetana K Jr (2015) Cancer microenvironment: what can we learn from the stem cell niche. Int J Mol Sci 16(10):24094–24110. doi: 10.3390/ijms161024094 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Ladányi A (2015) Prognostic and predictive significance of immune cells infiltrating cutaneous melanoma. Pigment Cell Melanoma Res 28:490–500. doi: 10.1111/pcmr.12371 CrossRefPubMedGoogle Scholar
  50. Lane SW, Williams DA, Watt FM (2014) Modulating the stem cell niche for tissue regeneration. Nat Biotechnol 32:795–803. doi: 10.1038/nbt.2978 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Lavker RM, Sun TT, Oshima H, Barrandon Y, Akiyama M, Ferraris C, Chevalier G, Favier B, Jahoda CA, Dhouailly D, Panteleyev AA, Christiano AM (2003) Hair follicle stem cells. J Investig Dermatol Symp Proc 8:28–38CrossRefPubMedGoogle Scholar
  52. Lee J, Tumbar T (2012) Hairy tale of signaling in hair follicle development and cycling. Semin Cell Dev Biol 23:906–916. doi: 10.1016/j.semcdb.2012.08.003 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Lee LM, Seftor EA, Bonde G, Cornell RA, Hendrix MJ (2005) The fate of human malignant melanoma cells transplanted into zebrafish embryos: assessment of migration and cell division in the absence of tumor formation. Dev Dyn 233:1560–1570CrossRefPubMedGoogle Scholar
  54. Mateu R, Živicová V, Drobná Krejčí E, Grim M, Strnad H, Vlček Č, Kolář M, Lacina L, Gál P, Borský J, Smetana K Jr, Dvořánková B (2016) Functional differences between neonatal and adult fibroblasts and keratinocytes: donor age affects epithelial-mesenchymal crosstalk in vitro. Int J Mol Med 38:1063–1074. doi: 10.3892/ijmm.2016.2706 PubMedPubMedCentralGoogle Scholar
  55. McCarty MF, Bielenberg DR, Nilsson MB, Gershenwald JE, Barnhill RL, Ahearne P, Bucana CD, Fidler IJ (2003) Epidermal hyperplasia overlying human melanoma correlates with tumour depth and angiogenesis. Melanoma Res 13:379–387CrossRefPubMedGoogle Scholar
  56. Mesa KR, Rompolas P, Greco V (2015) The dynamic duo: niche/stem cell interdependency. Stem Cell Reports 4:961–966. doi: 10.1016/j.stemcr.2015.05.001 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Mifková A, Kodet O, Szabo P, Kučera J, Dvořánková B, André S, Koripelly G, Gabius HJ, Lehn JM, Smetana K Jr (2014) Synthetic polyamine BPA-C8 inhibits TGF-β1-mediated conversion of human dermal fibroblast to myofibroblasts and establishment of galectin-1-rich extracellular matrix in vitro. Chembiochem 15:1465–1470. doi: 10.1002/cbic.201402087 CrossRefPubMedGoogle Scholar
  58. Mintz B, Illmensee K (1975) Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Natl Acad Sci U S A 72:3585–3589CrossRefPubMedPubMedCentralGoogle Scholar
  59. Motlík J, Klíma J, Dvoránková B, Smetana K Jr (2007) Porcine epidermal stem cells as a biomedical model for wound healing and normal/malignant epithelial cell propagation. Theriogenology 67:105–111CrossRefPubMedGoogle Scholar
  60. Nishisgori C (2015) Current concept of photocarcinogenesis. Photochem Photobiol Sci 14:1713–1721. doi: 10.1039/c5pp00185d CrossRefPubMedGoogle Scholar
  61. Pacioni S, D’Alessandris QG, Giannetti S, Morgante L, De Pascalis I, Coccè V, Bonomi A, Pascucci L, Alessandri G, Pessina A, Falchetti ML, Pallini R (2015) Mesenchymal stromal cells loaded with paclitaxel induce cytotoxic damage in glioblastoma brain xenografts. Stem Cell Res Ther 6:194. doi: 10.1186/s13287-015-0185-z CrossRefPubMedPubMedCentralGoogle Scholar
  62. Pierce GB (1983) The cancer cell and its control by the embryo. Rous-Whipple Award lecture. Am J Pathol 113:117–124PubMedPubMedCentralGoogle Scholar
  63. Sanmamed MF, Carranza-Rua O, Alfaro C, Oñate C, Martín-Algarra S, Perez G, Landazuri SF, Gonzalez A, Gross S, Rodriguez I, Muñoz-Calleja C, Rodríguez-Ruiz M, Sangro B, López-Picazo JM, Rizzo M, Mazzolini G, Pascual JI, Andueza MP, Perez-Gracia JL, Melero I, Sanmamed MF, Carranza-Rua O, Alfaro C, Oñate C, Martín-Algarra S, Perez G, Landazuri SF, Gonzalez A, Gross S, Rodriguez I, Muñoz-Calleja C, Rodríguez-Ruiz M, Sangro B, López-Picazo JM, Rizzo M, Mazzolini G, Pascual JI, Andueza MP, Perez-Gracia JL, Melero I (2014) Serum interleukin-8 reflects tumor burden and treatment response across malignancies of multiple tissue origins. Clin Cancer Res 20:5697–5707. doi: 10.1158/1078 CrossRefPubMedGoogle Scholar
  64. Shao H, Kong R, Ferrari ML, Radtke F, Capobianco AJ, Liu ZJ (2015) Notch1 pathway activity determines the regulatory role of cancer-associated fibroblasts in melanoma growth and invasion. PLoS One 10:e0142815. doi: 10.1371/journal.pone.0142815 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Sieber-Blum M, Grim M (2004) The adult hair follicle: cradle for pluripotent neural crest stem cells. Birth Defects Res C Embryo Today 72:162–172CrossRefPubMedGoogle Scholar
  66. Sieber-Blum M, Grim M, Hu YF, Szeder V (2004) Pluripotent neural crest stem cells in the adult hair follicle. Dev Dyn 231:258–269CrossRefPubMedGoogle Scholar
  67. Sieber-Blum M, Schnell L, Grim M, Hu YF, Schneider R, Schwab ME (2006) Characterization of epidermal neural crest stem cell (EPI-NCSC) grafts in the lesioned spinal cord. Mol Cell Neurosci 32:67–81CrossRefPubMedGoogle Scholar
  68. Smetana K Jr, Szabo P, Gal P, André S, Gabius HJ, Kodet O, Dvořánková B (2015) Emerging role of tissue lectins as microenvironmental effectors in tumors and wounds. Histol Histopathol 30:293–309PubMedGoogle Scholar
  69. Strnad H, Lacina L, Kolár M, Cada Z, Vlcek C, Dvoránková B, Betka J, Plzák J, Chovanec M, Sáchová J, Valach J, Urbanová M, Smetana K Jr (2010) Head and neck squamous cancer stromal fibroblasts produce growth factors influencing phenotype of normal human keratinocytes. Histochem Cell Biol 133:201–211. doi: 10.1007/s00418-009-0661-6 CrossRefPubMedGoogle Scholar
  70. Szabo P, Kolář M, Dvořánková B, Lacina L, Štork J, Vlček Č, Strnad H, Tvrdek M, Smetana K Jr (2011) Mouse 3T3 fibroblasts under the influence of fibroblasts isolated from stroma of human basal cell carcinoma acquire properties of multipotent stem cells. Biol Cell 103:233–248. doi: 10.1042/BC20100113 CrossRefPubMedGoogle Scholar
  71. Trylcova J, Busek P, Smetana K Jr, Balaziova E, Dvorankova B, Mifkova A, Sedo A (2015) Effect of cancer-associated fibroblasts on the migration of glioma cells in vitro. Tumour Biol 36:5873–5879. doi: 10.1007/s13277-015-3259-8 CrossRefPubMedGoogle Scholar
  72. Umansky V, Utikal J, Gebhardt C (2016) Predictive immune markers in advanced melanoma patients treated with ipilimumab. Oncoimmunology 5:e1158901. doi: 10.1080/2162402X.2016.1158901 CrossRefPubMedGoogle Scholar
  73. ÚZIS (2011) Cancer incidence in the Czech Republic. NOR ČR, ÚZIS ČR, pp 1–263Google Scholar
  74. Valach J, Fík Z, Strnad H, Chovanec M, Plzák J, Cada Z, Szabo P, Sáchová J, Hroudová M, Urbanová M, Steffl M, Pačes J, Mazánek J, Vlček C, Betka J, Kaltner H, André S, Gabius HJ, Kodet R, Smetana K Jr, Gál P, Kolář M (2012) Smooth muscle actin-expressing stromal fibroblasts in head and neck squamous cell carcinoma: increased expression of galectin-1 and induction of poor prognosis factors. Int J Cancer 131:2499–2508. doi: 10.1002/ijc.27550 CrossRefPubMedGoogle Scholar
  75. Van Kilsdonk JW, Bergers M, Van Kempen LC, Schalkwijk J, Swart GW (2010) Keratinocytes drive melanoma invasion in a reconstructed skin model. Melanoma Res 20:372–380. doi: 10.1097/CMR.0b013e32833d8d70 PubMedGoogle Scholar
  76. Whipple CA, Brinckerhoff CE (2014) BRAF(V600E) melanoma cells secrete factors that activate stromal fibroblasts and enhance tumourigenicity. Br J Cancer 111:1625–1633. doi: 10.1038/bjc.2014.452 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Woodward WA, Hill RP (2016) Cancer stem cells. Recent Results Cancer Res 198:25–44. doi: 10.1007/978-3-662-49651-0_2 CrossRefPubMedGoogle Scholar
  78. Zhang D, Ighaniyan S, Stathopoulos L, Rollo B, Landman K, Hutson J, Newgreen D (2014) The neural crest: a versatile organ system. Birth Defects Res C Embryo Today 102:275–298. doi: 10.1002/bdrc.2108 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Barbora Dvořánková
    • 1
    • 2
  • Pavol Szabo
    • 1
    • 2
  • Ondřej Kodet
    • 1
    • 2
    • 3
  • Hynek Strnad
    • 4
  • Michal Kolář
    • 4
  • Lukáš Lacina
    • 1
    • 3
  • Eliška Krejčí
    • 1
  • Ondřej Naňka
    • 1
  • Aleksi Šedo
    • 5
  • Karel SmetanaJr.
    • 1
    • 2
  1. 1.Institute of AnatomyCharles University, 1st Faculty of MedicinePragueCzech Republic
  2. 2.BIOCEVVestecCzech Republic
  3. 3.Department of Dermatology and VenerologyCharles University, 1st Faculty of Medicine and General University Hospital in PraguePragueCzech Republic
  4. 4.Institute of Molecular Genetics, Academy of Sciences of the Czech RepublicPragueCzech Republic
  5. 5.Institute of Biochemistry and Experimental OncologyCharles University, 1st Faculty of MedicinePragueCzech Republic

Personalised recommendations