, Volume 254, Issue 3, pp 1421–1429 | Cite as

Bacteriomes of the corn leafhopper, Dalbulus maidis (DeLong & Wolcott, 1923) (Insecta, Hemiptera, Cicadellidae: Deltocephalinae) harbor Sulcia symbiont: molecular characterization, ultrastructure, and transovarial transmission

  • María Eugenia BrentassiEmail author
  • Ernesto Franco
  • Pedro Balatti
  • Rocío Medina
  • Franco Bernabei
  • Ana M. Marino de Remes Lenicov
Original Article


In this study, we surveyed the bacteriome-associated microbiota of the corn leafhopper Dalbulus maidis by means of histological, ultrastructural, and molecular analyses. Amplification and sequencing of 16S rDNA genes revealed that the endosymbiont “Candidatus Sulcia muelleri” (Phylum Bacteroidetes) resides in bacteriomes of D. maidis. Phylogenetic analysis showed that the sequence was closely allied to others found in representatives of the subfamily Deltocephalinae. We failed to amplify other sequences as “Candidatus Nasuia deltocephalinicola,” a co-primary symbiont frequently associated to deltocephaline leafhoppers. In addition, a metagenetic analysis carried out in order to investigate the presence of other bacteriome-associated bacteria of D. maidis showed that the sequence of Sulcia accounted for 98.56 % of all the sequences. Histological and ultrastructural observations showed that microorganisms harbored in bacteriomes (central syncytium and cytoplasm of uninucleate bacteriocytes) look like others Sulcia described in hemipteran species and they were transovarially transmitted from mother to offspring which is typical of obligate endosymbionts. The only presence of Sulcia in the bacteriomes of D. maidis was discussed.


Candidatus Sulcia muelleri” Bacteriomes Corn stunt Corn leafhopper Obligate endosymbionts 



We thank Dr. E. Virla for collecting D. maidis samples used in the present work and Dr. A Maciá for improving the English version of this manuscript. The authors especially thank Dr Hiroaki Noda for providing Nephotettix cincticeps specimens. This work was supported by FONCYT-PICT-2007-00143-03, Comisión de Investigaciones Científicas Pcia de Bs. As. (CIC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), and Universidad Nacional de La Plata (UNLP).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.


  1. Baumann P (2005) Biology bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu Rev Microbiol 59:155–189CrossRefPubMedGoogle Scholar
  2. Baumann P, Moran NA, Baumann L (2006) Bacteriocyte-associated endosymbionts of insects. Prokaryotes 1:403–438CrossRefGoogle Scholar
  3. Bennett GM, Moran NA (2013) Small, smaller, smallest: the origins and evolution of ancient dual symbioses in a Phloem-feeding insect. Genome Biol Evol 5:1675–1688CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bennett GM, Abbà S, Kube M, Marzachì C (2016) Complete genome sequences of the obligate symbionts “Candidatus Sulcia muelleri” and “Ca. Nasuia deltocephalinicola” from the pestiferous leafhopper Macrosteles quadripunctulatus (Hemiptera: Cicadellidae). Genome Announc 4:e01604–e01615. doi: 10.1128/genomeA.01604-15 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Buchner P (1965) Endosymbiosis of animals with plant microorganisms. Interscience Publishers, New YorkGoogle Scholar
  6. Carloni E, Carpane P, Paradell S, Laguna I, Giménez Pecci MP (2013) Presence of Dalbulus maidis (Hemiptera: Cicadellidae) and of Spiroplasma kunkelii in the temperate region of Argentina. J Econ Entomol 106:1574–1581CrossRefPubMedGoogle Scholar
  7. Chang KP, Musgrave AJ (1972) Multiple symbiosis in a leafhopper, Helochara communis Fitch (Cicadellidae: Homoptera): envelopes, nucleoids and inclusions of the symbiotes. J Cell Sci 11:275–293PubMedGoogle Scholar
  8. Chang H, Cho ST, Canale MC, Mugford ST, Lopes JR, Hogenhout SA, Kuo CH (2015) Complete genome sequence of “Candidatus Sulcia muelleri” ML, an obligate nutritional symbiont of maize leafhopper (Dalbulus maidis). Genome Announc 3:e01483–14. doi: 10.1128/genomeA.01483–14 PubMedPubMedCentralGoogle Scholar
  9. Darriba D, Taboada GL, Doallo R, Posada D (2012) Model Test 2: more models, new heuristics and parallel computing. Nat Methods 9:772CrossRefPubMedPubMedCentralGoogle Scholar
  10. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072Google Scholar
  11. Felsenstein J (1985) Confidence limits on phylogenies: an approach using bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  12. Galindo Miranda N (1994) Los micetomas, un análisis morfofisiológico de su interacción con los Cicadellidae (Homoptera). Folia Entomol Mex 92:1–8Google Scholar
  13. Giménez Pecci MP, Laguna I, Ávila AO, de Remes Lenicov AMM, Virla E, Borgogno CF, Nome G, Paradell S (2002) Difusión del Corn Stunt Spiroplasma del maíz (Spiroplasma kunkelii) y del vector (Dalbulus maidis) en la República Argentina. Rev Fac Agron La Plata 105:1–8Google Scholar
  14. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704CrossRefPubMedGoogle Scholar
  15. Ishii Y, Matsuura Y, Kakizawa S, Nikoh N, Fukatsua T (2013) Diversity of bacterial endosymbionts associated with Macrosteles leafhoppers vectoring phytopathogenic phytoplasmas. App Environ Microbiol 79:5013–5022CrossRefGoogle Scholar
  16. Kaiser B (1980) Licht- und elektronenmikroskopische unter-suchlung der symbioten von Graphocephala coccinea Forstier (Homoptera: Jassidae). J Insect Morphol Embryol 9:79–88CrossRefGoogle Scholar
  17. Kobialka M, Michalik A, Walczak M, Lz J, Szklarzewicz T (2015a) Sulcia symbiont of the leafhopper Macrosteles laevis (Ribaut, 1927) (Insecta: Hemiptera:Cicadellidae: Deltocephalinae) harbors Arsenophonus bacteria. Protoplasma 253:903–912CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kobialka M, Michalik A, Walczak M, Lz J, Szklarzewicz T (2015b) Symbiotic microorganisms of the leafhopper Deltocephalus pulicaris (Fallén, 1806) (Insecta: Hemiptera: Cicadellidae: Deltocephalinae): molecular characterization, ultrastructure and transovarial transmission. Pol J Entomol 84:289–304Google Scholar
  19. Koga R, Bennett G, Cryan JR, Moran NA (2013) Evolutionary replacement of obligate symbionts in an ancient and diverse insect lineage. Environ Microbiol 15:2073–2081CrossRefPubMedGoogle Scholar
  20. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al (2007) ClustalW and ClustalX version 2. Bioinformatics 23:2947–2948CrossRefPubMedGoogle Scholar
  21. Marzorati M, Alma A, Sacchi L, Pajoro M et al (2006) A novel Bacteroidetes symbiont is localized in Scaphoideus titanus, the insect vector of Flavescence dorée in Vitis vinifera. Appl Environ Microbiol 72:1467–1475CrossRefPubMedPubMedCentralGoogle Scholar
  22. McCutcheon JP, Moran NA (2007) Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. Proc Natl Acad Sci U S A 104:19392–19397CrossRefPubMedPubMedCentralGoogle Scholar
  23. McCutcheon JP, Moran NA (2010) Functional convergence in reduced genomes of bacterial symbionts spanning 200 My of evolution. Genome Biol Evol 2:708–718PubMedPubMedCentralGoogle Scholar
  24. McCutcheon JP, McDonald BR, Moran NA (2009) Convergent evolution of metabolic roles in bacterial co-symbionts of insects. Proc Natl Acad Sci U S A 106:15394–15399CrossRefPubMedPubMedCentralGoogle Scholar
  25. Michalik A, Jankowska W, Szklarzewicz T (2009) Ultrastructure and transovarial transmission of endosymbiotic microorganisms in Conomelus anceps and Metcalfa pruinosa (Insecta: Hemiptera: Fulgoromorpha). Folia Biol (Kraków) 57:131–137CrossRefGoogle Scholar
  26. Michalik A, Jankowska W, Kot M, Gołas A, Szklarzewicz T (2014) Symbiosis in the green leafhopper, Cicadella viridis (Hemiptera, Cicadellidae). Association in statu nascendi? Arthropod Struct Dev 43:579–587CrossRefPubMedGoogle Scholar
  27. Moran NA (1998) Bacteriocyte-associated symbionts of insects. Bioscience 48:295–304CrossRefGoogle Scholar
  28. Moran NA (2007) Symbiosis as an adaptive process and source of phenotypic complexity. Proc Natl Acad Sci U S A 104:8627–8633CrossRefPubMedPubMedCentralGoogle Scholar
  29. Moran NA, Dale C, Dunbar H, Smith WA, Ochman H (2003) Intracellular symbionts of sharpshooters (Insecta: Hemiptera: Cicadellinae) form a distinct clade with a small genome. Environ Microbiol 5:116–126CrossRefPubMedGoogle Scholar
  30. Moran NA, Tran P, Gerardo NM (2005) Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial Phylum Bacteroidetes. Appl Environ Microbiol 71:8802–8810CrossRefPubMedPubMedCentralGoogle Scholar
  31. Nault LR (1990) Evolution of an insect pest: maize and the corn leafhopper, a case study. Maydica 35:165–175Google Scholar
  32. Nault LR, Ammar D (1989) Leafhopper and planthopper transmission of plant virus. Annu Rev Entomol 34:503–529CrossRefGoogle Scholar
  33. Noda H (1977) Histological and histochemical observation of intracellular yeast-like symbiotes in the fat body of the small brown planthopper, Laodelphax striatellus (Homoptera: Delphacidae). Appl Entomol Zool 12:134–141Google Scholar
  34. Noda H, Watanabe K, Kawai S, Yukuhiro F, Miyoshi T, Tomizawa M (2012) Bacteriome-associated endosymbionts of the green rice leafhopper Nephotettix cincticeps (Hemiptera: Cicadellidae). Appl Entomol Zool 47:217–225CrossRefGoogle Scholar
  35. Oliveira E, Waquil JM, Fernandes FT, Paiva E, Resende RO, Kitajima EW (1998) Enfezamento pàlido e enfezamento vermelho na cultura do milho no Brasil Central. Fitopatol Bras 23:45–47Google Scholar
  36. Sacchi L, Genchi M, Clementi E, Bigliardi E, Avanzati AM, Pajoro M, Negri I, Marzorati M, Gonella E, Alma A (2008) Multiple symbiosis in the leafhopper Scaphoideus titanus (Hemiptera: Cicadellidae): details of transovarial transmission of Cardinium sp. and yeast-like endosymbionts. Tissue Cell 40:231–242CrossRefPubMedGoogle Scholar
  37. Sandstrom J, Moran NA (1999) How nutritionally imbalanced is phloem sap for aphids? Entomol Exp Appl 91:203–210CrossRefGoogle Scholar
  38. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467CrossRefPubMedPubMedCentralGoogle Scholar
  39. Summers CG, Newton AS, Opgenorth DC (2004) Overwintering of corn leafhopper, Dalbulus maidis (Homoptera: Cicadellidae), and Spiroplasma kunkelii (Mycoplasmatales: Spiroplasmataceae) in California’s San Joaquin Valley. Environ Entomol 33:1644–1651CrossRefGoogle Scholar
  40. Szklarzewicz T, Grzywacz B, Szwedo J, Michalik A (2016) Bacterial symbionts of the leafhopper Evacanthus interruptus (Linnaeus, 1758) (Insecta: Hemiptera: Cicadellidae: Evacanthinae). Protoplasma 253:379–391CrossRefPubMedGoogle Scholar
  41. Takiya D, Tran P, Dietrich C, Moran N (2006) Co-cladogenesis spanning three phyla: leafhoppers (Insecta: Hemiptera: Cicadellidae) and their dual bacterial symbionts. Mol Ecol 15:4175–4191CrossRefPubMedGoogle Scholar
  42. Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577CrossRefPubMedGoogle Scholar
  43. Tsai JH, Perrier JL (1996) Morphology of the digestive and reproductive systems of Dalbulus maidis and Graminella nigrifrons (Homoptera: Cicadellidae). Fla Entomol 79:563–578CrossRefGoogle Scholar
  44. Urban JM, Cryan JR (2012) Two ancient bacterial endosymbionts have coevolved with the planthoppers (Insect: Hemiptera: Fulgoroidea). BMC Evol Biol 12:87CrossRefPubMedPubMedCentralGoogle Scholar
  45. Virla E, Díaz C, Carpane P, Laguna I, Ramallo J, Gómez L, Giménez Pecci MP (2004) Evaluación preliminar de la disminución en la producción de maíz causada por el “Corn Stunt Spiroplasma” (CSS) en Tucumán, Argentina. Bol San Veg Plagas 30:403–413Google Scholar
  46. Wangkeeree J, Miller T, Hanboonsong Y (2012) Candidates for symbiotic control of sugarcane white leaf disease. Appl Environ Microbiol 78:6804–6811CrossRefPubMedPubMedCentralGoogle Scholar
  47. Wu D, Daugherty SC, Van Aken SE, Pai GH et al (2006) Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters. Plos Biol 4:e188CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.División Entomología. Facultad de Ciencias Naturales y MuseoUniversidad Nacional de La Plata (UNLP)La PlataArgentina
  2. 2.Comisión de Investigaciones Científicas, Pcia de Bs. As. (CIC) and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)La PlataArgentina
  3. 3.Centro de Investigaciones de Fitopatología (CIDEFI). Facultad de Ciencias Agrarias y ForestalesUNLP-CICLa PlataArgentina
  4. 4.Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI). Facultad de Ciencias ExactasUNLP-CONICETLa PlataArgentina

Personalised recommendations