Protoplasma

, Volume 254, Issue 1, pp 603–607

Cyanobacterial origin of plant phytochromes

Short Communication

Abstract

Phytochromes are widely distributed photoreceptors with similar domain arrangements. The evolutionary origin of plant and green algal phytochromes is currently under debate. We used different algorithms to generate multiple phylogenetic trees for the N-terminal chromophore module and the C-terminal histidine kinase domains. The evolution of the chromophore module and the histidine kinase (like) regions follows different patterns, indicating several rearrangements between both parts of the protein. Out of 22 trees, 19 revealed a close relationship between cyanobacteria and Archaeplastida, the group encompassing plants and green algae. Opposed to other studies, a cyanobacterial origin of plant phytochromes is strongly supported by our results.

Keywords

Maximum likelihood Bayesian inference Photosensitive core module Histidine kinase 

References

  1. Buchberger T, Lamparter T (2015) Streptophyte phytochromes exhibit an N-terminus of cyanobacterial origin and a C-terminus of proteobacterial origin. BMC Res Notes 8:144CrossRefPubMedPubMedCentralGoogle Scholar
  2. Butler WL, Norris KH, Siegelman HW, Hendricks SB (1959) Detection, assay, and preliminary purification of the pigment controlling photoresponsive development of plants. Proc Natl Acad Sci U S A 45:1703–1708CrossRefPubMedPubMedCentralGoogle Scholar
  3. Curtis BA, Tanifuji G, Burki F, Gruber A, Irimia M, Maruyama S, Arias MC, Ball SG, Gile GH, Hirakawa Y, Hopkins JF, Kuo A, Rensing SA, Schmutz J, Symeonidi A, Elias M, Eveleigh RJ, Herman EK, Klute MJ, Nakayama T, Obornik M, Reyes-Prieto A, Armbrust EV, Aves SJ, Beiko RG, Coutinho P, Dacks JB, Durnford DG, Fast NM, Green BR, Grisdale CJ, Hempel F, Henrissat B, Hoppner MP, Ishida K, Kim E, Koreny L, Kroth PG, Liu Y, Malik SB, Maier UG, McRose D, Mock T, Neilson JA, Onodera NT, Poole AM, Pritham EJ, Richards TA, Rocap G, Roy SW, Sarai C, Schaack S, Shirato S, Slamovits CH, Spencer DF, Suzuki S, Worden AZ, Zauner S, Barry K, Bell C, Bharti AK, Crow JA, Grimwood J, Kramer R, Lindquist E, Lucas S, Salamov A, McFadden GI., Lane CE, Keeling PJ, Gray MW, Grigoriev IV, Archibald JM (2012) Algal genomes reveal evolutionary mosaicism and the fate ofnucleomorphs. Nature 492:59–65Google Scholar
  4. Duanmu D, Bachy C, Sudek S, Wong CH, Jimenez V, Rockwell NC, Martin SS, Ngan CY, Reistetter EN, van Baren MJ, Price DC, Wei CL, Reyes-Prieto A, Lagarias JC, Worden AZ (2014) Marine algae and land plants share conserved phytochrome signaling systems. Proc Natl Acad Sci U S A 111:15827–15832CrossRefPubMedPubMedCentralGoogle Scholar
  5. Hershey HP, Colbert JT, Lissemore JL, Barker RF, Quail PH (1984) Molecular cloning of cDNA for Avena phytochrome. Proc Natl Acad Sci U S A 81:2332–2336CrossRefPubMedPubMedCentralGoogle Scholar
  6. Karniol B, Wagner JR, Walker JM, Vierstra RD (2005) Phylogenetic analysis of the phytochrome superfamily reveals distinct microbial subfamilies of photoreceptors. Biochem J 392:103–116CrossRefPubMedPubMedCentralGoogle Scholar
  7. Kehoe DM, Grossman R (1996) Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors. Science 273:1409–1412CrossRefPubMedGoogle Scholar
  8. Lamparter T (2004) Evolution of cyanobacterial and plant phytochromes. FEBS Lett 573:1–5CrossRefPubMedGoogle Scholar
  9. Lamparter T, Mittmann F, Gärtner W, Börner T, Hartmann E, Hughes J (1997) Characterization of recombinant phytochrome from the cyanobacterium Synechocystis. Proc Natl Acad Sci U S A 94:11792–11797CrossRefPubMedPubMedCentralGoogle Scholar
  10. Li FW, Melkonian M, Rothfels CJ, Villarreal JC, Stevenson DW, Graham SW, Wong GK, Pryer KM, Mathews S (2015) Phytochrome diversity in green plants and the origin of canonical plant phytochromes. Nat Commun 6:7852CrossRefPubMedPubMedCentralGoogle Scholar
  11. Mandalari C, Losi A, Gärtner W (2013) Distance-tree analysis, distribution and co-presence of bilin- and flavin-binding prokaryotic photoreceptors for visible light. Photochem Photobiol Sci 12:1144–1157CrossRefPubMedGoogle Scholar
  12. Muramoto T, Kami C, Kataoka H, Iwata N, Linley PJ, Mukougawa K et al (2005) The tomato photomorphogenetic mutant, aurea, is deficient in phytochromobilin synthase for phytochrome chromophore biosynthesis. Plant Cell Physiol 46:661–665CrossRefPubMedGoogle Scholar
  13. Rottwinkel G, Oberpichler I, Lamparter T (2010) Bathy phytochromes in rhizobial soil bacteria. J Bacteriol 192:5124–5133CrossRefPubMedPubMedCentralGoogle Scholar
  14. Schäfer E and Nagy F (2006) Photomorphogenesis in plants and bacteria: function and signal transduction mechanisms.Google Scholar
  15. Ulijasz AT, Cornilescu G, von Stetten D, Kaminski S, Mroginski MA, Zhang J, Bhaya D, Hildebrandt P, Vierstra RD (2008) Characterization of two thermostable cyanobacterial phytochromes reveals global movements in the chromophore-binding domain during photoconversion. J Biol Chem 283:21251–21266CrossRefPubMedPubMedCentralGoogle Scholar
  16. Yeh KC, Wu SH, Murphy JT, Lagarias JC (1997) A cyanobacterial phytochrome two-component light sensory system. Science 277:1505–1508CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.Karlsruhe Institute of Technology (KIT)Botanical InstituteKarlsruheGermany

Personalised recommendations