, Volume 254, Issue 1, pp 315–325 | Cite as

Simultaneous and intercontinental tests show synchronism between the local gravimetric tide and the ultra-weak photon emission in seedlings of different plant species

  • Cristiano M. Gallep
  • Peter W. Barlow
  • Rosilene C. R. Burgos
  • Eduard P. A. van Wijk
Original Article


In order to corroborate the hypothesis that variations in the rate of spontaneous ultra-weak photon emission (UPE) from germinating seedlings are related to local variations of the lunisolar tidal force, a series of simultaneous tests was performed using the time courses of UPE collected from three plant species—corn, wheat and sunflower—and also from wheat samples whose grains were transported between continents, from Brazil to The Netherlands and vice versa. All tests which were run in parallel showed coincident inflections within the UPE time courses not only between seedlings of the same species but also between the different species. In most cases, the UPE inflections were synchronised with the turning points in the local gravimetric tidal variation. Statistical tests using the local Pearson correlation verified these coincidences in the two time series. The results therefore support the hypothesis of a relationship between UPE emissions and, in the oscillations, the local gravimetric tide. This applies to both the emissions from seedlings of different species and to the seedlings raised from transported grain samples of the same species.


Biophoton emission Chronobiology Seed germination Gravimetric tide 



The authors thank Prof. Emile Klingelé for the gift of the Etide program and also Dr J Fisahn for the valuable information. Thanks are also due to the following funding agencies: Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) [no. 14/04232-6, no. 04/10146-3] for partial support to CMG in Brazil and in Leiden/NL and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (CsF no. 230827/2012-8) for the partial support to RCRB in The Netherlands.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

709_2016_947_MOESM1_ESM.pdf (22.2 mb)
ESM 1 (PDF 22704 kb)


  1. Barlow PW (1998) Gravity and developmental plasticity. Adv Space Res 21(8/9):1097–1102CrossRefPubMedGoogle Scholar
  2. Barlow PW (2012) The primal integrated realm and the derived interactive realm in relation to biosemiosis, and their link with the ideas of J.W. von Goethe. Comm Integr Biol 5:434–439CrossRefGoogle Scholar
  3. Barlow PW (2015) Leaf movements and their relationship with the lunisolar gravitational force. Ann Bot 116:149–187. doi: 10.1093/aob/mcv096 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barlow PW, Fisahn J (2012) Lunisolar tidal force and the growth of plant roots, and some other of its effects on plant movements. Ann Bot 110:301–318. doi: 10.1093/aob/mcs038 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barlow PW, Mikulecký M, Střeštík J (2010) Tree-stem diameter fluctuates with the lunar tides and perhaps with geomagnetic activity. Protoplasma 247:25–43. doi: 10.1007/s00709-010-01-0136-6 CrossRefPubMedGoogle Scholar
  6. Barlow PW, Fisahn J, Yazdanbakhsh N, Moraes TA, Khabarova OV, Gallep CM (2013) Arabidopsis thaliana root elongation growth is sensitive to lunisolar tidal acceleration and may also be weakly correlated with geomagnetic variations. Ann Bot 111:859–872. doi: 10.1093/aob/mct089 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bertogna E, Santos SR, Paterniani JES, Conforti E, Gallep CM (2011) Compact, automatic set-up for ultra-weak photon emission measurements in organisms. In: Microwave & Optoelectronics Conference (IMOC), 2011 SBMO/IEEE MTT-S International 449–452. doi: 10.1109/IMOC.2011.6169247
  8. Bertogna E, Bezerra J, Conforti E, Gallep CM (2013) Acute stress in seedlings detected by ultra-weak photon emission. J Photochem Photobiol B 118:74–76. doi: 10.1016/j.jphotobiol.2012.11.005 CrossRefPubMedGoogle Scholar
  9. Bevington M (2015) Lunar biological effects and the magnetosphere. Pathophysiology 22:211–222. doi: 10.1016/j.pathophys.2015.08.005 CrossRefPubMedGoogle Scholar
  10. Binhi VN, Rubin AB (2007) Magnetobiology: the kT paradox and possible solutions. Electromagn Biol Med 26(1):45–62. doi: 10.1080/15368370701205677 CrossRefPubMedGoogle Scholar
  11. Brown FA Jr (1970) Hypothesis of environmental timing of the clock. In: Brown FA Jr, Hastings JW, Palmer JD (eds) The biological clock. Two views. Academic Press, New York, London, pp 13–59CrossRefGoogle Scholar
  12. Brown FA Jr, Chow CS (1973) Lunar-correlated variations in water uptake by bean seeds. Biol Bull 145:265–278CrossRefGoogle Scholar
  13. Carver BF (ed) (2009) Wheat science and trade. Wiley-Blackwell, Ames, IowaGoogle Scholar
  14. Chen W, Xing D, Wang J, He Y (2003) Rapid determination of rice seed vigour by spontaneous chemiluminescence and singlet oxygen generation during early imbibition. Luminescence 18:19–24. doi: 10.1002/bio.695 CrossRefPubMedGoogle Scholar
  15. Colli L, Facchini U, Guidotti G, Dugnani Lonati R, Orsenigo M, Sommariva O (1955) Further measurements on the bioluminescence of the seedlings. Experientia 11:479–481CrossRefGoogle Scholar
  16. Dorda G (2010) Quantisierte Zeit und die Vereinheitlichung von Gravitation und Elektromagnetismus. Göttingen, Cuvillier VerlagGoogle Scholar
  17. Fisahn J, Yazdanbakhsh N, Klingelé E, Barlow P (2012) Arabidopsis thaliana root growth kinetics and lunisolar tidal acceleration. New Phytol 195:346–355. doi: 10.1111/j.1469-8137.2012.04162.x CrossRefPubMedGoogle Scholar
  18. Fisahn J, Klingelé E, Barlow P (2015) Lunar gravity affects leaf movement of Arabidopsis thaliana in the International Space Station. Planta 241:1509–1518. doi: 10.1007/s00425-015-2280-x CrossRefPubMedGoogle Scholar
  19. Gallep CM (2014) Ultraweak, spontaneous photon emission in seedlings: toxicological and chronobiological applications. Luminescence 29:963–968. doi: 10.1002/bio.2658 CrossRefGoogle Scholar
  20. Gallep CM, Moraes TA, dos Santos SR, Barlow PW (2013) Coincidence of biophoton emission by seedlings during simultaneous, transcontinental germination tests. Protoplasma 250:793–796. doi: 10.1007/s00709-012-0447-x CrossRefPubMedGoogle Scholar
  21. Gallep CM, Moraes TA, Cervinková K, Cifra M, Katsumata M, Barlow PW (2014) Lunisolar tidal synchronism with biophoton emission during intercontinental wheat-seedling germination tests. Plant Signal Behav 9,5:e28671. doi: 10.4161/psb.28671 CrossRefGoogle Scholar
  22. Hoson T, Wakabayashi K (2015) Role of the plant cell wall in gravity resistance. Phytochem 112:84–90. doi: 10.1016/j.phytochem.2014.08.022 CrossRefGoogle Scholar
  23. Kamal AHM, Komatsu S (2015) Involvement of reactive oxygen species and mitochondrial proteins in biophoton emission in roots of soybean plants under flooding tress. J Proteome Res 14:2219–2236. doi: 10.1021/acs.jproteome.5b00007 CrossRefPubMedGoogle Scholar
  24. Kanokov Z, Schmelzer J, Nasirov A (2010) New mechanism of solution of the kBT-problem in magnetobiology. Open Physics 8(4):667–671. doi: 10.2478/s11534-009-0144-3 CrossRefGoogle Scholar
  25. Komatsu S, Kamal AHM, Makino T, Hossain Z (2014) Ultraweak photon emission and proteomics analyses in soybean under abiotic stress. Biochim Biophys Acta 1844:1208–1218. doi: 10.1016/j.bbapap.2014.04.002 CrossRefPubMedGoogle Scholar
  26. Longman IM (1959) Formulas for computing the tidal acceleration due to the moon and the sun. J Geophys Res 64:2351–2355CrossRefGoogle Scholar
  27. Luce GG (1971) Body time. Temple Smith, LondonGoogle Scholar
  28. Marchant J (1729) Observation botanique. Histoire de l’Académie Royale des Sciences (Paris), 35Google Scholar
  29. McClung CR, Gutierrez RA (2010) Network news: prime time for systems biology of the plant circadian clock. Curr Opin Genet Dev 20:588–598. doi: 10.1016/j.gde.2010.08.010 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Miyamoto S, Martinez GR, Medeiros MH, Di Mascio P (2014) Singlet molecular oxygen generated by biological hydroperoxides. J Photochem Photobiol B 139:24–33. doi: 10.1016/j.jphotobiol.2014.03.028 CrossRefPubMedGoogle Scholar
  31. Moraes TA, Barlow PW, Klingelé E, Gallep CM (2012) Spontaneous ultra-weak light emissions from wheat seedlings are rhythmic and synchronized with the time profile of the local gravimetric tide. Naturwiss 99:465–472. doi: 10.1007/s00114-012-0921-5 CrossRefPubMedGoogle Scholar
  32. Morita MT (2010) Directional gravity sensing in gravitropism. Ann Rev Plant Biol 61:705–720. doi: 10.1146/annurev.arplant.043008.092042 CrossRefGoogle Scholar
  33. Neamţu S, Morariu VV (2005) Plant growth in experimental space flight magnetic field conditions. Roman J Biophys 15:41–46Google Scholar
  34. Palmer JD (2005) The clocks controlling the tide-associated rhythms of intertidal animals. BioEssays 22:32–37CrossRefGoogle Scholar
  35. Persinger MA (2014) Terrestrial and lunar gravitational forces upon the mass of a cell: relevance to cell function. Int Lett Chem Phys Astron 2:15–21Google Scholar
  36. Spruyt E, Verbelen J-P, de Greef JA (1987) Expression of circaseptan and circannual rhythmicity in the imbibition of dry stored bean seeds. Plant Physiol 84:707–710CrossRefPubMedPubMedCentralGoogle Scholar
  37. Sweeney BM (1969) Rhythmic phenomena in plants. Academic Press, LondonGoogle Scholar
  38. Van Wijk EPA, Bosman S, Van Wijk R (2010) Using ultra-weak photon emission to determine the effect of oligomeric proanthocyanidins on oxidative stress of human skin. J Photochem Photobiol B 98:199–206. doi: 10.1016/j.jphotobiol.2010.01.003 CrossRefPubMedGoogle Scholar
  39. Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for growth stages of cereals. Weed Res 14:415–421CrossRefGoogle Scholar
  40. Zakhvataev VE (2015) Tidal variations of radon activity as a possible factor synchronizing biological processes. Biophysics 60:140–156. doi: 10.1134/S0006350915010273 CrossRefGoogle Scholar
  41. Zhang L, Hastings MH, Green EW, Tauber E, Sladek M, Webster SG, Kyriacou CP, Wilcockson DC (2013) Dissociation of circadian and circatidal timekeeping in the marine crustacean Eurydice pulchra. Curr Biol 23:1863–1873. doi: 10.1016/j.cub.2013.08.038 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Zürcher E, Cantiani MG, Sorbetti-Guerri F, Michel D (1998) Tree stem diameters fluctuate with tide. Nature 392:665–666. doi: 10.1038/33570 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Cristiano M. Gallep
    • 1
  • Peter W. Barlow
    • 2
  • Rosilene C. R. Burgos
    • 3
    • 4
  • Eduard P. A. van Wijk
    • 3
    • 4
    • 5
  1. 1.School of TechnologyUniversity of CampinasLimeiraBrazil
  2. 2.School of Biological SciencesUniversity of BristolBristolUK
  3. 3.Sino-Dutch Centre for Preventive and Personalized Medicine/Centre for Photonics of Living SystemsLeiden UniversityLeidenThe Netherlands
  4. 4.Division of Analytical Biosciences, LACDRLeiden UniversityLeidenThe Netherlands
  5. 5.Meluna ResearchGeldermalsenThe Netherlands

Personalised recommendations