Advertisement

Protoplasma

, Volume 254, Issue 1, pp 587–596 | Cite as

Chloramphenicol acetyltransferase—a new selectable marker in stable nuclear transformation of the red alga Cyanidioschyzon merolae

  • Maksymilian ZienkiewiczEmail author
  • Tomasz Krupnik
  • Anna Drożak
  • Anna Golke
  • Elżbieta Romanowska
Short Communication

Abstract

In this study, we have shown the applicability of chloramphenicol acetyltransferase as a new and convenient selectable marker for stable nuclear transformation as well as potential chloroplast transformation of Cyanidioschyzon merolae—a new model organism, which offers unique opportunities for studding the mitochondrial and plastid physiology as well as various evolutionary, structural, and functional features of the photosynthetic apparatus.

Keywords

Cyanidioschyzon merolae Chloramphenicol acetyltransferase (CAT) stable genome transformation 

Abbreviations

PEG

Polyethylene glycol

Cm

Chloramphenicol

Chl a

Chlorophyll a

Notes

Acknowledgments

This investigation was financed by grant Opus 5 (DEC-2013/09/B/NZ1/00187) awarded by the Polish National Science Centre.

We acknowledge the contribution of Dr. Bohdan Paterczyk from the Laboratory of Electron and Confocal Microscopy, University of Warsaw, Poland.

Supplementary material

709_2015_936_MOESM1_ESM.pdf (1.6 mb)
ESM 1 (PDF 1650 kb)

References

  1. Alberts B, Johnson A, Lewis J et al (2002) Molecular biology of the cell, 4th edn. Garland Science, New YorkGoogle Scholar
  2. Ben-Shem A, Jenner L, Yusupova G, Yusupova M (2010) Crystal structure of the eukaryotic ribosome. Science 330:1203–1209. doi: 10.1126/science.1194294 CrossRefPubMedGoogle Scholar
  3. Ben-Shem A, Garreau de Loubresse N, Melnikov S, Jenner L, Yusupova G, Yusupov M (2011) The structure of the eukaryotic ribosome at 3.0 Å resolution. Science 334:1524–1529. doi: 10.1126/science.1212642 CrossRefPubMedGoogle Scholar
  4. Chrzanowska-Lightowlers ZM, Preiss T, Lightowlers RN (1994) Inhibition of mitochondrial protein synthesis promotes increased stability of nuclear-encoded respiratory gene transcripts. J Biol Chem 269:27322–27328PubMedGoogle Scholar
  5. Ellis RJ (1968) Stereospecificity of chloramphenicol inhibition of chloroplast ribosomes. Biochem J 110:42CrossRefGoogle Scholar
  6. Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8:978–984CrossRefPubMedPubMedCentralGoogle Scholar
  7. Fujiwara T, Misumi O, Tashiro K, Yoshida Y, Nishida K, Yagisawa F, Imamura S, Yoshida M, Mori T, Tanaka K, Kuroiwa H, Kuroiwa T (2009) Periodic gene expression patterns during the highly synchronized cell nucleus and organelle division cycles in the unicellular red alga Cyanidioschyzon merolae. DNA Res 16:59–72. doi: 10.1093/dnares/dsn032 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Fujiwara T, Kuroiwa H, Yagisawa F, Ohnuma M, Yoshida Y, Yoshida M, Nishida K, Misumi O, Watanabe S, Tanaka K, Kuroiwa T (2010) The coiled-coil protein VIG1 is essential for tethering vacuoles to mitochondria during vacuole inheritance of Cyanidioschyzon merolae. Plant Cell 22:772–781. doi: 10.1105/tpc.109.070227 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Fujiwara T, Ohnuma M, Yoshida M, Kuroiwa T, Hirano T (2013) Gene targeting in the red alga Cyanidioschyzon merolae: single- and multi-copy insertion using authentic and chimeric selection markers. PLoS ONE 8, e73608. doi: 10.1371/journal.pone.0073608 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Fujiwara T, Kanesaki Y, Hirooka S, Era A, Sumiya N, Yoshikawa H, Tanaka K, Miyagishima S (2015) A nitrogen source-dependent inducible and repressible gene expression system in the red alga Cyanidioschyzon merolae. Front Plant Sci 6:657. doi: 10.3389/fpls.2015.00657 PubMedPubMedCentralGoogle Scholar
  11. Fukuda S, Mikami K, Uji T, Park EJ, Ohba T, Asada K, Kitade Y, Endo H, Kato I, Saga N (2008) Factors influencing efficiency of transient gene expression in the red macrophyte Porphyra yezoensis. Plant Sci 174:329–339. doi: 10.1016/j.plantsci.2007.12.006 CrossRefGoogle Scholar
  12. Grivell LA, Walg HL (1972) Subunit homology between Escherichia coli, mitochondrial and chloroplast ribosomes. Biochem Biophys Res Commun 49:1452–1458. doi: 10.1016/0006-291X(72)90502-5 CrossRefPubMedGoogle Scholar
  13. Gupta A, Shah P, Haider A, Gupta K, Siddiqi MI, Ralph SA, Habib S (2014) Reduced ribosomes of the apicoplast and mitochondrion of Plasmodium spp. and predicted interactions with antibiotics. Open Biol 4:140045. doi: 10.1098/rsob.140045 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580CrossRefPubMedGoogle Scholar
  15. Hans-Walter H (2005) Plant biochemistry. Elsevier Academic , Boston, pp 532–539Google Scholar
  16. Houtkooper RH, Mouchiroud L, Ryu D, Moullan N, Katsyuba E, Knott G, Williams RW, Auwerx J (2013) Mitonuclear protein imbalance as a conserved longevity mechanism. Nature 497:451–457. doi: 10.1038/nature12188 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Imamura S, Kanesaki Y, Ohnuma M, Inouye T, Sekine Y, Fujiwara T, Kuroiwa T, Tanaka K (2009) R2R3-type MYB transcription factor, CmMYB1, is a central nitrogen assimilation regulator in Cyanidioschyzon merolae. Proc Natl Acad Sci U S A 106:12548–12553. doi: 10.1073/pnas.0902790106 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Imamura S, Terashita M, Ohnuma M, Maruyama S, Minoda A, Weber AP, Inouye T, Sekine Y, Fujita Y, Omata T, Tanaka K (2010) Nitrate assimilatory genes and their transcriptional regulation in a unicellular red alga Cyanidioschyzon merolae: genetic evidence for nitrite reduction by a sulfite reductase-like enzyme. Plant Cell Physiol 5:707–717. doi: 10.1093/pcp/pcq043 CrossRefGoogle Scholar
  19. Jarvis P, Robinson C (2004) Mechanisms of protein import and routing in chloroplasts. Curr Biol 14:1064–1077. doi: 10.1016/j.cub.2004.11.049 CrossRefGoogle Scholar
  20. Kashino Y, Inoue-Kashino N, Roose JL, Pakrasi HB (2006) Absence of the PsbQ protein results in destabilization of the PsbV protein and decreased oxygen evolution activity in cyanobacterial Photosystem II. J Biol Chem 281:20834–20841. doi: 10.1074/jbc.M603188200 CrossRefPubMedGoogle Scholar
  21. Kearsey SE, Craig IW (1981) Altered ribosomal RNA genes in mitochondria from mammalian cells with chloramphenicol resistance. Nature 290:607–608. doi: 10.1038/290607a0 CrossRefPubMedGoogle Scholar
  22. Kuroiwa T, Kuroiwa H, Sakai A, Takahashi H, Toda K, Itoh R (1998) The division apparatus of plastid and mitochondria. Int Rev Cytol 181:1–41. doi: 10.1016/S0074-7696(08)60415-5 CrossRefPubMedGoogle Scholar
  23. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi: 10.1038/227680a0 CrossRefPubMedGoogle Scholar
  24. Li W, Ruf S, Boc R (2011) Chloramphenicol acetyltransferase as selectable marker for plastid transformation. Plant Mol Biol 76:443–451. doi: 10.1007/s11103-010-9678-4 CrossRefPubMedGoogle Scholar
  25. Liu H, Zhang H, Weisz DA, Vidavsky I, Gross ML, Pakrasi HB (2014) MS-based cross-linking analysis reveals the location of the PsbQ protein in cyanobacterial photosystem II. Proc Natl Acad Sci U S A 25:4638–4643. doi: 10.1073/pnas.1323063111 CrossRefGoogle Scholar
  26. Long KS, Porse BT (2003) A conserved chloramphenicol binding site at the entrance to the ribosomal peptide exit tunnel Nucl. Acids Res 31:7208–7215. doi: 10.1093/nar/gkg945 CrossRefGoogle Scholar
  27. Margulies MM, Brubaker C (1970) Effect of chloramphenicol on amino acid incorporation by chloroplasts and comparison with the effect of chloramphenicol on chloroplast development in vivo. Plant Physiol 45:632–633CrossRefPubMedPubMedCentralGoogle Scholar
  28. Martin WF, Garg S, Zimorski V (2015) Endosymbiotic theories for eukaryote origin. Philos Trans R Soc Lond B Biol Sci 26:20140330. doi: 10.1098/rstb.2014.0330 CrossRefGoogle Scholar
  29. Matsuzaki M, Misumi O, Shin-i T, Maruyama S, Takahara M, Miyagishima S, Mori T, Nishida K et al (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657. doi: 10.1038/nature02398 CrossRefPubMedGoogle Scholar
  30. Minoda A, Sakagami R, Yagisawa F, Kuroiwa T, Tanaka K (2004) Improvement of culture conditions and evidence for nuclear transformation by homologous recombination in a red alga, Cyanidioschyzon merolae 10D. Plant Cell Physiol 45:667–671. doi: 10.1093/pcp/pch087 CrossRefPubMedGoogle Scholar
  31. Minoda A, Weber APM, Tanaka K, Miyagishma S (2010) Nucleus-independent control of the Rubisco operon by plastid-encoded transcription factor Ycf30 in the red alga Cyanidioschyzon merolae. Plant Physiol 154:1532–1540. doi: 10.1104/pp.110.163188 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Miyagishima S, Fujiwara T, Sumiya N, Hirooka S, Nakano A, Kabeya Y, Nakamura M (2014) Translation-independent circadian control of the cell cycle in a unicellular photosynthetic eukaryote. Nat Commun 5:3807. doi: 10.1038/ncomms4807 CrossRefPubMedGoogle Scholar
  33. Nakamura Y, Gojobori T, Ikemura T (2000) Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res 28:292CrossRefPubMedPubMedCentralGoogle Scholar
  34. Nishida K, Misumi O, Yagisawa F, Kuroiwa H, Nagata T, Kuroiwa T (2004) Triple immunofluorescent labeling of FtsZ, Dynamin, and EF-Tu reveals a loose association between the inner and outer membrane mitochondrial division machinery in the red alga Cyanidioschyzon merolae. J Histochem Cytochem 52:843–849. doi: 10.1369/jhc.4C6315.2004 CrossRefPubMedGoogle Scholar
  35. Nozaki H, Matsuzaki M, Takahara M, Misumi O, Kuroiwa H, Hasegawa H, Shin-I T, Kohara Y, Ogasawara N, Kuroiwa T (2003) The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids. J Mol Evol 56:485–497CrossRefPubMedGoogle Scholar
  36. Ohnuma M, Yokoyama T, Inouye T, Sekine Y, Tanaka K (2008) Polyethylene glycol (PEG)-mediated transient gene expression in a red alga, Cyanidioschyzon merolae 10D. Plant Cell Physiol 49:117–120. doi: 10.1093/pcp/pcm157 CrossRefPubMedGoogle Scholar
  37. Ohnuma M, Misumi O, Fujiwara T, Watanabe S, Tanaka K, Kuroiwa T (2009) Transient gene suppression in a red alga, Cyanidioschyzon merolae 10D. Protoplasma 236:107–112. doi: 10.1007/s00239-002-2419-9 CrossRefPubMedGoogle Scholar
  38. Ohta N, Sato N, Kuroiwa T (1998) Structure and organization of the mitochondrial genome of the unicellular red alga Cyanidioschyzon merolae deduced from the complete nucleotide sequence. Nucleic Acids Res 26:5190–5198. doi: 10.1093/nar/26.22.5190 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Ohta N, Matsuzaki M, Misumi O, Miyagishima S, Nozaki H, Tanaka K, Shin-I T, Kohara Y, Kuroiwa T (2003) Complete sequence and analysis of the plastid genome of the unicellular red alga Cyanidioschyzon merolae. DNA Res 10:67–77. doi: 10.1093/dnares/10.2.67 CrossRefPubMedGoogle Scholar
  40. Recht MI, Douthwaite S, Puglisi JD (1999) Basis for bacterial specificity of action of aminoglycoside antibiotics. EMBO J 18:3133–3138. doi: 10.1093/emboj/18.11.3133 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Sambrok EF, Fritsh J, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Sing Harbor Laboratory PressGoogle Scholar
  42. Schwarzacher T, Heslop-Harrison P (2000) Practical in situ hybridizationGoogle Scholar
  43. Shaw WV, Unowsky J (1968) Mechanism of R factor-mediated chloramphenicol resistance. J Bacteriol 95:1976–1978PubMedPubMedCentralGoogle Scholar
  44. Smith-Johannsen H, Gibbs SP (1972) Effects of chloramphenicol on chloroplast and mitochondrial ultrastructure in Ochromonas danica. J Cell Biol 52:598–614CrossRefPubMedPubMedCentralGoogle Scholar
  45. Stegeman WJ, Hoober JK (1974) Mitochondrial protein synthesis in Chlamydomonas reinhardtii y-l. J Biol Chem 249:8866–6873Google Scholar
  46. Sumiya N, Kawase Y, Hayakawa J, Matsuda M, Nakamura M, Era A, Tanaka K, Kondo A, Hasunuma T, Imamura S, Miyagishima S (2015) Expression of cyanobacterial acyl-ACP reductase elevates the triacylglycerol level in the red alga Cyanidioschyzon merolae. Plant Cell Physiol 56:1962–1980. doi: 10.1093/pcp/pcv120 CrossRefPubMedGoogle Scholar
  47. Towbin H, Staehelin T, Gordon J (1979) “Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications”. Proc Natl Acad Sci U S A: 4350–4354Google Scholar
  48. Watanabe S, Ohnuma M, Sato J, Yoshikawa H, Tanaka K (2011) Utility of a GFP reporter system in the red alga Cyanidioschyzon merolae. J Gen Appl Microbiol 57:69–72. doi: 10.2323/jgam57.69 CrossRefPubMedGoogle Scholar
  49. Watanabe S, Sato J, Imamura S, Ohnuma M, Ohoba Y, Chibazakura T, Tanaka K, Yoshikawa H (2014) Stable expression of a GFP-reporter gene in the red alga Cyanidioschyzon merolae. Biosci Biotechnol Biochem 78:175–177. doi: 10.1080/09168451.2014.877823 CrossRefPubMedGoogle Scholar
  50. Xie WH, Zhu CC, Zhang NS, Li DW, Yang WD, Liu JS, Sathishkumar R, Li HY (2014) Construction of novel chloroplast expression vector and development of an efficient transformation system for the diatom Phaeodactylum tricornutum. Mar Biotechnol 16:538–546. doi: 10.1007/s10126-014-9570-3 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Yunis AA, Manyan DR, Arimura GK (1973) Comparative effect of chloramphenicol and thiamphenicol on DNA and mitochondrial protein synthesis in mammalian cells. J Lab Clin Med 81:713–718PubMedGoogle Scholar
  52. Zilinskas BA, Greenwald LS (1986) Phycobilisome structure and function. Photosynth Res 10:7–35. doi: 10.1007/BF00024183 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Maksymilian Zienkiewicz
    • 1
    Email author
  • Tomasz Krupnik
    • 1
  • Anna Drożak
    • 1
  • Anna Golke
    • 1
  • Elżbieta Romanowska
    • 1
  1. 1.Warsaw UniversityWarsawPoland

Personalised recommendations