, Volume 253, Issue 6, pp 1391–1404 | Cite as

Inhibitors of plant hormone transport

  • Petr Klíma
  • Martina Laňková
  • Eva Zažímalová
Review Article


Here we present an overview of what is known about endogenous plant compounds that act as inhibitors of hormonal transport processes in plants, about their identity and mechanism of action. We have also summarized commonly and less commonly used compounds of non-plant origin and synthetic drugs that show at least partial ‘specificity’ to transport or transporters of particular phytohormones. Our main attention is focused on the inhibitors of auxin transport. The urgent need to understand precisely the molecular mechanism of action of these inhibitors is highlighted.


Plant hormones Transport Inhibitors Auxin Cytokinins Strigolactones Abscisic acid Cell biology 



Abscisic acid


ATP-binding cassette subfamily B


ATP-binding cassette subfamily G


ADP-ribosylation factor


Auxin response factor


ARF-GTPase-activating protein


ADP-ribosylation factor/GTPase guanine-nucleotide exchange factor


Vacuolar protein sorting 45


Auxin resistant 1


BFA-visualized endocytic trafficking defective


BFA- visualized exocytic trafficking defective


Brefeldin A


m-Chlorophenyl hydrazone


3-Chloro-4-hydroxyphenylacetic acid


Cyclopropyl propane dione


Chromosaponin I


COOH-terminal propeptide


2,4-Dichlorophenoxyacetic acid


Endoplasmic reticulum


Carbonyl cyanide-4-(trifluoromethoxy)phenyl hydrazone




9-Hydroxyfluorene-9-carboxylic acid


Indole-3-acetic acid


Multidrug resistance


Multivesicular bodies


Naphthalene-1-acetic acid


Naphthalene-2-acetic acid


NPA-binding protein


1-Naphthoxyacetic acid


2-Naphthoxyacetic acid


1-Naphthylphthalamic acid


2-Oxindole-3-acetic acid


2-(1-Pyrenoyl)-benzoic acid










Plasma membrane


Phosphatase 2A


Prevacuolar compartment


Ras genes from rat brain A1b


Reactive oxygen species




Secretory 8


Trans-Golgi network/early endosome


2,3,5-Triiodobenzoic acid


Target of MYB (TOM) 1-like


Trans-cinnamic acid


Transparent testa4




Vascular network defective


Very long chain fatty acids



The authors thank the Ministry of Education, Youth and Sports of the Czech Republic (project COST-CZ LD15088) for support of their work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. Agati G, Azzarello E, Pollastri S, Tattini M (2012) Flavonoids as antioxidants in plants: location and functional significance. Plant Sci 196:67–76. doi: 10.1016/j.plantsci.2012.07.014 PubMedCrossRefGoogle Scholar
  2. Aldridge DC, Armstrong JJ, Speake RN, Turner WB (1967) The cytochalasins, a new class of biologically active mould metabolites. Chem Commun 26. doi:  10.1039/c19670000026
  3. Anders N, Jürgens G (2008) Large ARF guanine nucleotide exchange factors in membrane trafficking. Cell Mol Life Sci 65:3433–3445. doi: 10.1007/s00018-008-8227-7 PubMedCrossRefGoogle Scholar
  4. Bailly A, Sovero V, Vincenzetti V et al (2008) Modulation of P-glycoproteins by auxin transport inhibitors is mediated by interaction with immunophilins. J Biol Chem 283:21817–21826. doi: 10.1074/jbc.M709655200 PubMedCrossRefGoogle Scholar
  5. Banbury DN, Oakley JD, Sessions RB, Banting G (2003) Tyrphostin A23 inhibits internalization of the transferrin receptor by perturbing the interaction between tyrosine motifs and the medium chain subunit of the AP-2 adaptor complex. J Biol Chem 278:12022–12028. doi: 10.1074/jbc.M211966200 PubMedCrossRefGoogle Scholar
  6. Benjamins R, Scheres B (2008) Auxin: the looping star in plant development. Annu Rev Plant Biol 59:443–465. doi: 10.1146/annurev.arplant.58.032806.103805 PubMedCrossRefGoogle Scholar
  7. Bennett T, Leyser O (2014) The auxin question: a philosophical overview. In: Zažímalová E, Petrášek J, Benková E (eds) Auxin and its role in plant development. Springer Vienna, Vienna, pp 3–19CrossRefGoogle Scholar
  8. Bennett MJ, Marchant A, Green HG et al (1996) Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273:948–950. doi: 10.1126/science.273.5277.948 PubMedCrossRefGoogle Scholar
  9. Bernasconi P, Patel BC, Reagan JD, Subramanian MV (1996) The N-1-naphthylphthalamic acid-binding protein is an integral membrane protein. Plant Physiol 111:427–432. doi: 10.1104/pp. 111.2.427 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Beyer EM (1972) Auxin transport: a new synthetic inhibitor. Plant Physiol 50:322–327PubMedPubMedCentralCrossRefGoogle Scholar
  11. Beyer EM, Johnson AL, Sweetser PB (1976) A new class of synthetic auxin transport inhibitors. Plant Physiol 57:839–841PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bouchard R, Bailly A, Blakeslee JJ et al (2006) Immunophilin-like TWISTED DWARF1 modulates auxin efflux activities of Arabidopsis P-glycoproteins. J Biol Chem 281:30603–30612. doi: 10.1074/jbc.M604604200 PubMedCrossRefGoogle Scholar
  13. Buer CS, Muday GK (2004) The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light. Plant Cell 16:1191–1205. doi: 10.1105/tpc.020313 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bürkle L, Cedzich A, Döpke C et al (2003) Transport of cytokinins mediated by purine transporters of the PUP family expressed in phloem, hydathodes, and pollen of Arabidopsis. Plant J 34:13–26. doi: 10.1046/j.1365-313X.2003.01700.x PubMedCrossRefGoogle Scholar
  15. Butler JH, Hu S, Brady SR et al (1998) In vitro and in vivo evidence for actin association of the naphthylphthalamic acid-binding protein from zucchini hypocotyls. Plant J 13:291–301. doi: 10.1046/j.1365-313X.1998.00017.x PubMedCrossRefGoogle Scholar
  16. Cox DN (1994) NPA binding activity is peripheral to the plasma membrane and is associated with the cytoskeleton. Plant Cell 6:1941–1953. doi: 10.1105/tpc.6.12.1941 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Crews P, Manes LV, Boehler M (1986) Jasplakinolide, a cyclodepsipeptide from the marine sponge, Jaspis sp. Tetrahedron Lett 27:2797–2800. doi: 10.1016/S0040-4039(00)84645-6 CrossRefGoogle Scholar
  18. Darwin C (1880) The power of movement in plants. John Murray, LondonCrossRefGoogle Scholar
  19. daSilva LLP, Taylor JP, Hadlington JL et al (2005) Receptor salvage from the prevacuolar compartment is essential for efficient vacuolar protein targeting. Plant Cell 17:132–148. doi: 10.1105/tpc.104.026351 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Davies PJ (1995) The plant hormone concept: concentration, sensitivity and transport. In: Davies PJ (ed) Plant hormones: physiology, biochemistry and molecular biology. Springer Netherlands, Dordrecht, p 13–38Google Scholar
  21. Davies PJ (ed) (2010) Plant hormones: biosynthesis, signal transduction, action. Springer Netherlands, DordrechtGoogle Scholar
  22. Delbarre A, Muller P, Imhoff V, Guern J (1996) Comparison of mechanisms controlling uptake and accumulation of 2,4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells. Planta 198:532–541. doi: 10.1007/BF00262639 CrossRefGoogle Scholar
  23. Dhonukshe P, Aniento F, Hwang I et al (2007) Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. Curr Biol 17:520–527. doi: 10.1016/j.cub.2007.01.052 PubMedCrossRefGoogle Scholar
  24. Dhonukshe P, Grigoriev I, Fischer R et al (2008) Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes. Proc Natl Acad Sci U S A 105:4489–4494. doi: 10.1073/pnas.0711414105 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Dhonukshe P, Huang F, Galvan-Ampudia CS et al (2010) Plasma membrane-bound AGC3 kinases phosphorylate PIN auxin carriers at TPRXS(N/S) motifs to direct apical PIN recycling. Development 137:3245–3255. doi: 10.1242/dev.052456 PubMedCrossRefGoogle Scholar
  26. Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847. doi: 10.1038/35081178 PubMedCrossRefGoogle Scholar
  27. Dixon MW, Jacobson JA, Cady CT, Muday GK (1996) Cytoplasmic orientation of the naphthylphthalamic acid-binding protein in zucchini plasma membrane vesicles. Plant Physiol 112:421–432. doi: 10.1104/pp. 112.1.421 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Doyle SM, Robert S (2014) Using a reverse genetics approach to investigate small-molecule activity. In: Hicks GR, Robert S (eds) Plant chemical genomics: methods and protocols. Humana Press, New York, p 51–62Google Scholar
  29. Doyle SM, Haeger A, Vain T et al (2015a) An early secretory pathway mediated by GNOM-LIKE 1 and GNOM is essential for basal polarity establishment in Arabidopsis thaliana. Proc Natl Acad Sci 112:E806–E815. doi: 10.1073/pnas.1424856112 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Doyle SM, Vain T, Robert S (2015b) Small molecules unravel complex interplay between auxin biology and endomembrane trafficking. J Exp Bot 66:4971–4982. doi: 10.1093/jxb/erv179 PubMedCrossRefGoogle Scholar
  31. Drakakaki G, Robert S, Szatmari A-M et al (2011) Clusters of bioactive compounds target dynamic endomembrane networks in vivo. Proc Natl Acad Sci 108:17850–17855. doi: 10.1073/pnas.1108581108 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Drdová EJ, Synek L, Pečenková T et al (2013) The exocyst complex contributes to PIN auxin efflux carrier recycling and polar auxin transport in Arabidopsis. Plant J 73:709–719. doi: 10.1111/tpj.12074 PubMedCrossRefGoogle Scholar
  33. Edgerton MD, Tropsha A, Jones AM (1994) Modelling the auxin-binding site of auxin-binding protein 1 of maize. Phytochemistry 35:1111–1123. doi: 10.1016/S0031-9422(00)94807-6 CrossRefGoogle Scholar
  34. Emans N, Zimmermann S, Fischer R (2002) Uptake of a fluorescent marker in plant cells is sensitive to brefeldin A and wortmannin. Plant Cell 14:71–86PubMedPubMedCentralCrossRefGoogle Scholar
  35. Faulkner IJ, Rubery PH (1992) Flavonoids and flavonoid sulphates as probes of auxin-transport regulation in Cucurbita pepo hypocotyl segments and vesicles. Planta 186:618–625. doi: 10.1007/BF00198044 PubMedCrossRefGoogle Scholar
  36. Fendrych M, Synek L, Pečenková T et al (2013) Visualization of the exocyst complex dynamics at the plasma membrane of Arabidopsis thaliana. Mol Biol Cell 24:510–520. doi: 10.1091/mbc.E12-06-0492 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Feraru E, Feraru MI, Asaoka R et al (2012) BEX5/RabA1b regulates trans-Golgi network-to-plasma membrane protein trafficking in Arabidopsis. Plant Cell 24:3074–3086. doi: 10.1105/tpc.112.098152 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Friml J (2003) Auxin transport—shaping the plant. Curr Opin Plant Biol 6:7–12. doi: 10.1016/S1369526602000031 PubMedCrossRefGoogle Scholar
  39. Friml J, Wiśniewska J, Benková E et al (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809. doi: 10.1038/415806a PubMedCrossRefGoogle Scholar
  40. Fujita H, Syono K (1997) PIS1, a negative regulator of the action of auxin transport inhibitors in Arabidopsis thaliana. Plant J 12:583–595PubMedCrossRefGoogle Scholar
  41. Gälweiler L, Guan C, Müller A et al (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282:2226–2230. doi: 10.1126/science.282.5397.2226 PubMedCrossRefGoogle Scholar
  42. Geisler M, Blakeslee JJ, Bouchard R et al (2005) Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1. Plant J 44:179–194. doi: 10.1111/j.1365-313X.2005.02519.x PubMedCrossRefGoogle Scholar
  43. Geldner N, Friml J, Stierhof Y-D et al (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413:425–428. doi: 10.1038/35096571 PubMedCrossRefGoogle Scholar
  44. Geldner N, Anders N, Wolters H et al (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219–230. doi: 10.1016/S0092-8674(03)00003-5 PubMedCrossRefGoogle Scholar
  45. Gillissen B, Bürkle L, André B et al (2000) A new family of high-affinity transporters for adenine, cytosine, and purine derivatives in Arabidopsis. Plant Cell 12:291–300PubMedPubMedCentralCrossRefGoogle Scholar
  46. Godbolé R, Michalke W, Nick P, Hertel R (2000) Cytoskeletal drugs and gravity-induced lateral auxin transport in rice coleoptiles. Plant Biol 2:176–181. doi: 10.1055/s-2000-9154 CrossRefGoogle Scholar
  47. Goldsmith MHM (1977) The polar transport of auxin. Annu Rev Plant Physiol 28:439–478. doi: 10.1146/annurev.pp. 28.060177.002255 CrossRefGoogle Scholar
  48. Grebe M, Xu J, Möbius W et al (2003) Arabidopsis sterol endocytosis involves actin-mediated trafficking via ARA6-positive early endosomes. Curr Biol 13:1378–1387. doi: 10.1016/S0960-9822(03)00538-4 PubMedCrossRefGoogle Scholar
  49. Grunewald W, De Smet I, Lewis DR et al (2012) Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynthesis. Proc Natl Acad Sci 109:1554–1559. doi: 10.1073/pnas.1121134109 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Haagen-Smit AJ, Went FW (1935) A physiological analysis of the growth substances. Proceedings Royal Acad. Amsterdam 38:852–857Google Scholar
  51. Habets MEJ, Offringa R (2014) PIN-driven polar auxin transport in plant developmental plasticity: a key target for environmental and endogenous signals. New Phytol 203:362–377. doi: 10.1111/nph.12831 PubMedCrossRefGoogle Scholar
  52. Härri E, Loeffler W, Sigg HP et al (1963) Über die isolierung neuer stoffwechselprodukte aus Penicillium brefeldianum DODGE. Helv Chim Acta 46:1235–1243. doi: 10.1002/hlca.19630460419 CrossRefGoogle Scholar
  53. Hellsberg E, Montanari F, Ecker G (2015) The ABC of phytohormone translocation. Planta Med 81:474–487. doi: 10.1055/s-0035-1545880 PubMedCrossRefGoogle Scholar
  54. Hertel R (1983) The mechanism of auxin transport as a model for auxin action. Z Pflanzenphysiol 112:53–67. doi: 10.1016/S0044-328X(83)80062-2 CrossRefGoogle Scholar
  55. Hirose N, Makita N, Yamaya T, Sakakibara H (2005) Functional characterization and expression analysis of a gene, OsENT2, encoding an equilibrative nucleoside transporter in rice suggest a function in cytokinin transport. Plant Physiol 138:196–206. doi: 10.1104/pp. 105.060137 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Horwitz SB (1994) Taxol (paclitaxel): mechanisms of action. Ann Oncol 5(Suppl 6):S3–S6PubMedGoogle Scholar
  57. Imhoff V, Muller P, Guern J, Delbarre A (2000) Inhibitors of the carrier-mediated influx of auxin in suspension-cultured tobacco cells. Planta 210:580–588. doi: 10.1007/s004250050047 PubMedCrossRefGoogle Scholar
  58. Jacobs M, Rubery PH (1988) Naturally occurring auxin transport regulators. Science 241:346–349. doi: 10.1126/science.241.4863.346 PubMedCrossRefGoogle Scholar
  59. Jelínková A, Müller K, Fílová-Pařezová M, Petrášek J (2015) NtGNL1a ARF-GEF acts in endocytosis in tobacco cells. BMC Plant Biol. doi: 10.1186/s12870-015-0621-3 PubMedPubMedCentralGoogle Scholar
  60. Kang J, Hwang J-U, Lee M et al (2010) PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci U S A 107:2355–2360. doi: 10.1073/pnas.0909222107 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Katekar GF (1976) Inhibitors of the geotropic response in plants: a correlation of molecular structures. Phytochemistry 15:1421–1424. doi: 10.1016/S0031-9422(00)88906-2 CrossRefGoogle Scholar
  62. Katekar GF (1979) Auxins: on the nature of the receptor site and molecular requirements for auxin activity. Phytochemistry 18:223–233. doi: 10.1016/0031-9422(79)80059-X CrossRefGoogle Scholar
  63. Katekar GF, Geissler AE (1980) Auxin transport inhibitors: IV. Evidence of a common mode of action for a proposed class of auxin transport inhibitors: the phytotropins. Plant Physiol 66:1190–1195. doi: 10.1104/pp. 66.6.1190 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Kim J-Y, Henrichs S, Bailly A et al (2010) Identification of an ABCB/P-glycoprotein-specific inhibitor of auxin transport by chemical genomics. J Biol Chem 285:23309–23317. doi: 10.1074/jbc.M110.105981 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Kitakura S, Vanneste S, Robert S et al (2011) Clathrin mediates endocytosis and polar distribution of PIN auxin transporters in Arabidopsis. Plant Cell 23:1920–1931. doi: 10.1105/tpc.111.083030 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Kleine-Vehn J, Dhonukshe P, Swarup R et al (2006) Subcellular trafficking of the Arabidopsis auxin influx carrier AUX1 uses a novel pathway distinct from PIN1. Plant Cell 18:3171–3181. doi: 10.1105/tpc.106.042770 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Kleine-Vehn J, Dhonukshe P, Sauer M et al (2008a) ARF GEF-dependent transcytosis and polar delivery of PIN auxin carriers in Arabidopsis. Curr Biol 18:526–531. doi: 10.1016/j.cub.2008.03.021 PubMedCrossRefGoogle Scholar
  68. Kleine-Vehn J, Langowski L, Wisniewska J et al (2008b) Cellular and molecular requirements for polar PIN targeting and transcytosis in plants. Mol Plant 1:1056–1066. doi: 10.1093/mp/ssn062 PubMedCrossRefGoogle Scholar
  69. Kleine-Vehn J, Leitner J, Zwiewka M et al (2008c) Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting. Proc Natl Acad Sci U S A 105:17812–17817. doi: 10.1073/pnas.0808073105 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kleine-Vehn J, Huang F, Naramoto S et al (2009) PIN auxin efflux carrier polarity is regulated by PINOID kinase-mediated recruitment into GNOM-independent trafficking in Arabidopsis. Plant Cell 21:3839–3849. doi: 10.1105/tpc.109.071639 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Ko D, Kang J, Kiba T et al (2014) Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin. Proc Natl Acad Sci U S A 111:7150–7155. doi: 10.1073/pnas.1321519111 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Korbei B, Moulinier-Anzola J, De-Araujo L et al (2013) Arabidopsis TOL proteins act as gatekeepers for vacuolar sorting of PIN2 plasma membrane protein. Curr Biol 23:2500–2505. doi: 10.1016/j.cub.2013.10.036 PubMedCrossRefGoogle Scholar
  73. Kretzschmar T, Kohlen W, Sasse J et al (2012) A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483:341–344. doi: 10.1038/nature10873 PubMedCrossRefGoogle Scholar
  74. Kuromori T, Sugimoto E, Shinozaki K (2011) Arabidopsis mutants of AtABCG22, an ABC transporter gene, increase water transpiration and drought susceptibility. Plant J 67:885–894. doi: 10.1111/j.1365-313X.2011.04641.x PubMedCrossRefGoogle Scholar
  75. Kuromori T, Sugimoto E, Shinozaki K (2014) Intertissue signal transfer of abscisic acid from vascular cells to guard cells. Plant Physiol 164:1587–1592. doi: 10.1104/pp. 114.235556 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Laňková M, Smith RS, Pešek B et al (2010) Auxin influx inhibitors 1-NOA, 2-NOA, and CHPAA interfere with membrane dynamics in tobacco cells. J Exp Bot 61:3589–3598. doi: 10.1093/jxb/erq172 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Liu C, Xu Z, Chua NH (1993) Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell 5:621–630. doi: 10.1105/tpc.5.6.621 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Lomax TL, Muday GK, Rubery PH (1995) Auxin transport. In: Davies PJ (ed) Plant hormones: physiology, biochemistry and molecular biology. Springer Netherlands, Dordrecht, p 509–530Google Scholar
  79. Ludwig-Müller J (2014) Auxin and the interaction between plants and microorganisms. In: Zažímalová E, Petrášek J, Benková E (eds) Auxin and Its Role in Plant Development. Springer Vienna, Vienna, pp 413–434CrossRefGoogle Scholar
  80. Marhavý P, Bielach A, Abas L et al (2011) Cytokinin modulates endocytic trafficking of PIN1 auxin efflux carrier to control plant organogenesis. Dev Cell 21:796–804. doi: 10.1016/j.devcel.2011.08.014 PubMedCrossRefGoogle Scholar
  81. Matsuoka K (1995) Different sensitivity to wortmannin of two vacuolar sorting signals indicates the presence of distinct sorting machineries in tobacco cells. J Cell Biol 130:1307–1318. doi: 10.1083/jcb.130.6.1307 PubMedCrossRefGoogle Scholar
  82. Men S, Boutté Y, Ikeda Y et al (2008) Sterol-dependent endocytosis mediates post-cytokinetic acquisition of PIN2 auxin efflux carrier polarity. Nat Cell Biol 10:237–244. doi: 10.1038/ncb1686 PubMedCrossRefGoogle Scholar
  83. Miller R (1984) The use and abuse of filipin to localize cholesterol in membranes. Cell Biol Int Rep 8:519–535. doi: 10.1016/0309-1651(84)90050-X PubMedCrossRefGoogle Scholar
  84. Morejohn LC, Bureau TE, Molè-Bajer J et al (1987) Oryzalin, a dinitroaniline herbicide, binds to plant tubulin and inhibits microtubule polymerization in vitro. Planta 172:252–264. doi: 10.1007/BF00394595 PubMedCrossRefGoogle Scholar
  85. Morris DA, Rubery PH, Jarman J, Sabater M (1991) Effects of inhibitors of protein synthesis on transmembrane auxin transport in Cucurbita pepo L. Hypocotyl segments. J Exp Bot 42:773–783. doi: 10.1093/jxb/42.6.773 CrossRefGoogle Scholar
  86. Morris DA, Friml J, Zažímalová E (2010) The transport of auxins. In: Davies PJ (ed) Plant Hormones. Springer Netherlands, Dordrecht, pp 451–484CrossRefGoogle Scholar
  87. Muday GK, DeLong A (2001) Polar auxin transport: controlling where and how much. Trends Plant Sci 6:535–542. doi: 10.1016/S1360-1385(01)02101-X PubMedCrossRefGoogle Scholar
  88. Murphy AS, Hoogner KR, Peer WA, Taiz L (2002) Identification, purification, and molecular cloning of N-1-naphthylphthalmic acid-binding plasma membrane-associated aminopeptidases from Arabidopsis. Plant Physiol 128:935–950. doi: 10.1104/pp. 010519 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Nakanishi S, Kakita S, Takahashi I et al (1992) Wortmannin, a microbial product inhibitor of myosin light chain kinase. J Biol Chem 267:2157–2163PubMedGoogle Scholar
  90. Naramoto S, Nodzyński T, Dainobu T et al (2014a) VAN4 encodes a putative TRS120 that is required for normal cell growth and vein development in Arabidopsis. Plant Cell Physiol 55:750–763. doi: 10.1093/pcp/pcu012 PubMedCrossRefGoogle Scholar
  91. Naramoto S, Otegui MS, Kutsuna N et al (2014b) Insights into the localization and function of the membrane trafficking regulator GNOM ARF-GEF at the Golgi apparatus in Arabidopsis. Plant Cell 26:3062–3076. doi: 10.1105/tpc.114.125880 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Nebenführ A, Ritzenthaler C, Robinson DG (2002) Brefeldin A: deciphering an enigmatic inhibitor of secretion. Plant Physiol 130:1102–1108. doi: 10.1104/pp. 011569 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Ni DA, Wang LJ, Xu ZH, Xia ZA (1999) Foliar modifications induced by inhibition of polar transport of auxin. Cell Res 9:27–35. doi: 10.1038/ PubMedCrossRefGoogle Scholar
  94. Noh B, Murphy AS, Spalding EP (2001) Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development. Plant Cell 13:2441–2454. doi: 10.1105/tpc.010350 PubMedPubMedCentralCrossRefGoogle Scholar
  95. Okada K, Ueda J, Komaki M et al (1991) Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell 3:677–684. doi: 10.1105/tpc.3.7.677 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Ortiz-Zapater E, Soriano-Ortega E, Marcote MJ et al (2006) Trafficking of the human transferrin receptor in plant cells: effects of tyrphostin A23 and brefeldin A. Plant J 48:757–770. doi: 10.1111/j.1365-313X.2006.02909.x PubMedCrossRefGoogle Scholar
  97. Osbourn AE (2003) Saponins in cereals. Phytochemistry 62:1–4. doi: 10.1016/S0031-9422(02)00393-X PubMedCrossRefGoogle Scholar
  98. Ovečka M, Berson T, Beck M et al (2010) Structural sterols are involved in both the initiation and tip growth of root hairs in Arabidopsis thaliana. Plant Cell 22:2999–3019. doi: 10.1105/tpc.109.069880 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Pacifici E, Polverari L, Sabatini S (2015) Plant hormone cross-talk: the pivot of root growth. J Exp Bot 66:1113–1121. doi: 10.1093/jxb/eru534 PubMedCrossRefGoogle Scholar
  100. Paciorek T, Zažímalová E, Ruthardt N et al (2005) Auxin inhibits endocytosis and promotes its own efflux from cells. Nature 435:1251–1256. doi: 10.1038/nature03633 PubMedCrossRefGoogle Scholar
  101. Parry G, Delbarre A, Marchant A et al (2001) Novel auxin transport inhibitors phenocopy the auxin influx carrier mutation aux1. Plant J 25:399–406. doi: 10.1046/j.1365-313x.2001.00970.x PubMedCrossRefGoogle Scholar
  102. Paudyal R, Jamaluddin A, Warren JP et al (2014) Trafficking modulator TENin1 inhibits endocytosis, causes endomembrane protein accumulation at the pre-vacuolar compartment and impairs gravitropic response in Arabidopsis thaliana. Biochem J 460:177–185. doi: 10.1042/BJ20131136 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Peer WA (2001) Flavonoid accumulation patterns of transparent testa mutants of Arabidopsis. Plant Physiol 126:536–548. doi: 10.1104/pp. 126.2.536 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Peer WA, Bandyopadhyay A, Blakeslee JJ et al (2004) Variation in expression and protein localization of the PIN family of auxin efflux facilitator proteins in flavonoid mutants with altered auxin transport in Arabidopsis thaliana. Plant Cell 16:1898–1911. doi: 10.1105/tpc.021501 PubMedPubMedCentralCrossRefGoogle Scholar
  105. Pěnčík A, Simonovik B, Petersson SV et al (2013) Regulation of auxin homeostasis and gradients in Arabidopsis roots through the formation of the indole-3-acetic acid catabolite 2-oxindole-3-acetic acid. Plant Cell 25:3858–3870. doi: 10.1105/tpc.113.114421 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Petersson SV, Johansson AI, Kowalczyk M et al (2009) An auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis. Plant Cell 21:1659–1668. doi: 10.1105/tpc.109.066480 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Petrášek J, Friml J (2009) Auxin transport routes in plant development. Development 136:2675–2688. doi: 10.1242/dev.030353 PubMedCrossRefGoogle Scholar
  108. Petrášek J, Černá A, Schwarzerová K et al (2003) Do phytotropins inhibit auxin efflux by impairing vesicle traffic? Plant Physiol 131:254–263. doi: 10.1104/pp. 012740 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Petrášek J, Mravec J, Bouchard R et al (2006) PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312:914–918. doi: 10.1126/science.1123542 PubMedCrossRefGoogle Scholar
  110. Rahman A (2001) Chromosaponin I specifically interacts with AUX1 protein in regulating the gravitropic response of Arabidopsis roots. Plant Physiol 125:990–1000. doi: 10.1104/pp. 125.2.990 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Reichardt I, Stierhof Y-D, Mayer U et al (2007) Plant cytokinesis requires de novo secretory trafficking but not endocytosis. Curr Biol 17:2047–2053. doi: 10.1016/j.cub.2007.10.040 PubMedCrossRefGoogle Scholar
  112. Richter S, Geldner N, Schrader J et al (2007) Functional diversification of closely related ARF-GEFs in protein secretion and recycling. Nature 448:488–492. doi: 10.1038/nature05967 PubMedCrossRefGoogle Scholar
  113. Robert S, Chary SN, Drakakaki G et al (2008) Endosidin1 defines a compartment involved in endocytosis of the brassinosteroid receptor BRI1 and the auxin transporters PIN2 and AUX1. Proc Natl Acad Sci U S A 105:8464–8469. doi: 10.1073/pnas.0711650105 PubMedPubMedCentralCrossRefGoogle Scholar
  114. Robert S, Kleine-Vehn J, Barbez E et al (2010) ABP1 mediates auxin inhibition of clathrin-dependent endocytosis in Arabidopsis. Cell 143:111–121. doi: 10.1016/j.cell.2010.09.027 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Rocher F, Chollet J-F, Legros S et al (2009) Salicylic acid transport in Ricinus communis involves a pH-dependent carrier system in addition to diffusion. Plant Physiol 150:2081–2091. doi: 10.1104/pp. 109.140095 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Rojas-Pierce M, Titapiwatanakun B, Sohn EJ et al (2007) Arabidopsis P-glycoprotein19 participates in the inhibition of gravitropism by gravacin. Chem Biol 14:1366–1376. doi: 10.1016/j.chembiol.2007.10.014 PubMedCrossRefGoogle Scholar
  117. Ross JJ (1998) Effects of auxin transport inhibitors on gibberellins in pea. J Plant Growth Regul 17:141–146. doi: 10.1007/PL00007027 CrossRefGoogle Scholar
  118. Roudier F, Gissot L, Beaudoin F et al (2010) Very-long-chain fatty acids are involved in polar auxin transport and developmental patterning in Arabidopsis. Plant Cell 22:364–375. doi: 10.1105/tpc.109.071209 PubMedPubMedCentralCrossRefGoogle Scholar
  119. Rubery PH, Sheldrake AR (1974) Carrier-mediated auxin transport. Planta 118:101–121. doi: 10.1007/BF00388387 PubMedCrossRefGoogle Scholar
  120. Santelia D, Henrichs S, Vincenzetti V et al (2008) Flavonoids redirect PIN-mediated polar auxin fluxes during root gravitropic responses. J Biol Chem 283:31218–31226. doi: 10.1074/jbc.M710122200 PubMedPubMedCentralCrossRefGoogle Scholar
  121. Sasse J, Simon S, Gübeli C et al (2015) Asymmetric localizations of the ABC transporter PaPDR1 trace paths of directional strigolactone transport. Curr Biol 25:647–655. doi: 10.1016/j.cub.2015.01.015 PubMedCrossRefGoogle Scholar
  122. Sieburth LE, Muday GK, King EJ et al (2006) SCARFACE encodes an ARF-GAP that is required for normal auxin efflux and vein patterning in Arabidopsis. Plant Cell 18:1396–1411. doi: 10.1105/tpc.105.039008 PubMedPubMedCentralCrossRefGoogle Scholar
  123. Simon S, Kubeš M, Baster P et al (2013) Defining the selectivity of processes along the auxin response chain: a study using auxin analogues. New Phytol 200:1034–1048. doi: 10.1111/nph.12437 PubMedCrossRefGoogle Scholar
  124. Spector I, Shochet N, Kashman Y, Groweiss A (1983) Latrunculins: novel marine toxins that disrupt microfilament organization in cultured cells. Science 219:493–495. doi: 10.1126/science.6681676 PubMedCrossRefGoogle Scholar
  125. Steinmann T, Geldner N, Grebe M et al (1999) Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286:316–318. doi: 10.1126/science.286.5438.316 PubMedCrossRefGoogle Scholar
  126. Sun J, Hirose N, Wang X et al (2005) Arabidopsis SOI33/AtENT8 gene encodes a putative equilibrative nucleoside transporter that is involved in cytokinin transport in planta. J Integr Plant Biol 47:588–603. doi: 10.1111/j.1744-7909.2005.00104.x CrossRefGoogle Scholar
  127. Surpin M, Rojas-Pierce M, Carter C et al (2005) The power of chemical genomics to study the link between endomembrane system components and the gravitropic response. Proc Natl Acad Sci U S A 102:4902–4907. doi: 10.1073/pnas.0500222102 PubMedPubMedCentralCrossRefGoogle Scholar
  128. Sussman MR, Gardner G (1980) Solubilization of the receptor for N-1-naphthylphthalamic acid. Plant Physiol 66:1074–1078. doi: 10.1104/pp. 66.6.1074 PubMedPubMedCentralCrossRefGoogle Scholar
  129. Tanaka H, Kitakura S, De Rycke R et al (2009) Fluorescence imaging-based screen identifies ARF GEF component of early endosomal trafficking. Curr Biol 19:391–397. doi: 10.1016/j.cub.2009.01.057 PubMedCrossRefGoogle Scholar
  130. Tanaka H, Kitakura S, Rakusová H et al (2013) Cell polarity and patterning by PIN trafficking through early endosomal compartments in Arabidopsis thaliana. PLoS Genet 9, e1003540. doi: 10.1371/journal.pgen.1003540 PubMedPubMedCentralCrossRefGoogle Scholar
  131. Tanaka H, Nodzyński T, Kitakura S et al (2014) BEX1/ARF1A1C is required for BFA-sensitive recycling of PIN auxin transporters and auxin-mediated development in Arabidopsis. Plant Cell Physiol 55:737–749. doi: 10.1093/pcp/pct196 PubMedPubMedCentralCrossRefGoogle Scholar
  132. Thimann KV (1977) Hormone action in the whole life of plants. The University of Massachusetts Press, AmherstGoogle Scholar
  133. Thompson HE, Swanson CP, Norman AG (1946) New growth-regulating compounds. I. Summary of growth-inhibitory activities of some organic compounds as determined by three tests. Bot Gaz 107:476–507CrossRefGoogle Scholar
  134. Titapiwatanakun B, Blakeslee JJ, Bandyopadhyay A et al (2009) ABCB19/PGP19 stabilises PIN1 in membrane microdomains in Arabidopsis. Plant J 57:27–44. doi: 10.1111/j.1365-313X.2008.03668.x PubMedCrossRefGoogle Scholar
  135. Tsuda E, Yang H, Nishimura T et al (2011) Alkoxy-auxins are selective inhibitors of auxin transport mediated by PIN, ABCB, and AUX1 transporters. J Biol Chem 286:2354–2364. doi: 10.1074/jbc.M110.171165 PubMedCrossRefGoogle Scholar
  136. Tsurumi S, Takagi T, Hashimoto T (1992) A γ-pyronyl-triterpenoid saponin from Pisum sativum. Phytochemistry 31:2435–2438. doi: 10.1016/0031-9422(92)83294-9 PubMedCrossRefGoogle Scholar
  137. van der Weij HG (1932) Der mechanismus des wuchsstofftransportes. De Bussy, AmsterdamGoogle Scholar
  138. van Overbeek J, Blondeau R, Horne V (1951) Trans-cinnamic acid as an anti-auxin. Am J Bot 38:589–595CrossRefGoogle Scholar
  139. Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3:2–20. doi: 10.1093/mp/ssp106 PubMedCrossRefGoogle Scholar
  140. Wang J, Cai Y, Miao Y et al (2009) Wortmannin induces homotypic fusion of plant prevacuolar compartments. J Exp Bot 60:3075–3083. doi: 10.1093/jxb/erp136 PubMedPubMedCentralCrossRefGoogle Scholar
  141. Wani MC, Taylor HL, Wall ME et al (1971) Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93:2325–2327. doi: 10.1021/ja00738a045 PubMedCrossRefGoogle Scholar
  142. Went FW (1928) Wuchsstoff und wachstum. Rec Trav Bot Néerl 25:1–116Google Scholar
  143. Yaish P, Gazit A, Gilon C, Levitzki A (1988) Blocking of EGF-dependent cell proliferation by EGF receptor kinase inhibitors. Science 242:933–935. doi: 10.1126/science.3263702 PubMedCrossRefGoogle Scholar
  144. Yin R, Han K, Heller W et al (2014) Kaempferol 3-O-rhamnoside-7-O-rhamnoside is an endogenous flavonol inhibitor of polar auxin transport in Arabidopsis shoots. New Phytol 201:466–475. doi: 10.1111/nph.12558 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Petr Klíma
    • 1
  • Martina Laňková
    • 1
  • Eva Zažímalová
    • 1
  1. 1.Institute of Experimental BotanyThe Czech Academy of SciencesPrague 6Czech Republic

Personalised recommendations