Protoplasma

, Volume 253, Issue 6, pp 1439–1447 | Cite as

Biocompatibility of different nanostructured TiO2 scaffolds and their potential for urologic applications

  • Roghayeh Imani
  • Meysam Pazoki
  • Daša Zupančič
  • Mateja Erdani Kreft
  • Veronika Kralj-Iglič
  • Peter Veranič
  • Aleš Iglič
Original Article

Abstract

Despite great efforts in tissue engineering of the ureter, urinary bladder, and urethra, further research is needed in order to improve the patient’s quality of life and minimize the economic burden of different lower urinary tract disorders. The nanostructured titanium dioxide (TiO2) scaffolds have a wide range of clinical applications and are already widely used in orthopedic or dental medicine. The current study was conducted to synthesize TiO2 nanotubes by the anodization method and TiO2 nanowires and nanospheres by the chemical vapor deposition method. These scaffolds were characterized with scanning electron microscopy (SEM) and X-ray diffraction (XRD) methods. In order to test the urologic applicability of generated TiO2 scaffolds, we seeded the normal porcine urothelial (NPU) cells on TiO2 nanotubes, TiO2 nanowires, TiO2 nanospheres, and on the standard porous membrane. The viability and growth of the cells were monitored everyday, and after 3 weeks of culturing, the analysis with scanning electron microscope (SEM) was performed. Our results showed that the NPU cells were attached on all scaffolds; they were viable and formed a multilayered epithelium, i.e., urothelium. The apical plasma membrane of the majority of superficial NPU cells, grown on all three different TiO2 scaffolds and on the porous membrane, exhibited microvilli; thus, indicating that they were at a similar differentiation stage. The maximal caliper diameter measurements of superficial NPU cells revealed significant alterations, with the largest cells being observed on nanowires and the smallest ones on the porous membrane. Our findings indicate that different nanostructured TiO2 scaffolds, especially nanowires, have a great potential for tissue engineering and should be further investigated for various urologic applications.

Keywords

Nanostructured TiO2 scaffolds Anodization Chemical vapor deposition Normal porcine urothelial cells Urologic application 

References

  1. Al-Awadi K, Kehinde EO et al (2005) Iatrogenic ureteric injuries: incidence, aetiological factors and the effect of early management on subsequent outcome. Int Urol Nephrol 37(2):235–241PubMedCrossRefGoogle Scholar
  2. Alpaslan E, Ercan B et al (2011) Anodized 20 nm diameter nanotubular titanium for improved bladder stent applications. Int J Nanomedicine 6:219–225PubMedPubMedCentralGoogle Scholar
  3. Atala A (1999) Future perspectives in reconstructive surgery using tissue engineering. Urol Clin N Am 26(1):157–165, ix-x CrossRefGoogle Scholar
  4. Atala A (2006) Recent applications of regenerative medicine to urologic structures and related tissues. Curr Opin Urol 16(4):305–309PubMedCrossRefGoogle Scholar
  5. Atala A, Bauer SB et al (2006) Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367(9518):1241–1246PubMedCrossRefGoogle Scholar
  6. Carbone R, Marangi I et al (2006) Biocompatibility of cluster-assembled nanostructured TiO2 with primary and cancer cells. Biomaterials 27(17):3221–3229PubMedCrossRefGoogle Scholar
  7. Eberli D, Susaeta R et al (2007) Tunica repair with acellular bladder matrix maintains corporal tissue function. Int J Impot Res 19(6):602–609PubMedCrossRefGoogle Scholar
  8. Fraser M, Thomas DF et al (2004) A surgical model of composite cystoplasty with cultured urothelial cells: a controlled study of gross outcome and urothelial phenotype. BJU Int 93(4):609–616PubMedCrossRefGoogle Scholar
  9. Fu WJ, Xu YD et al (2012) New ureteral scaffold constructed with composite poly(L-lactic acid)-collagen and urothelial cells by new centrifugal seeding system. J Biomed Mater Res A 100(7):1725–1733PubMedCrossRefGoogle Scholar
  10. Gongadze E, Kabaso D et al (2011) Adhesion of osteoblasts to a nanorough titanium implant surface. Int J Nanomedicine 6:1801–1816PubMedPubMedCentralGoogle Scholar
  11. Hamilton RF, Wu N et al (2009) Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity. Part Fibre Toxicol 6:35PubMedPubMedCentralCrossRefGoogle Scholar
  12. Imani R, Kabaso D et al (2012) Morphological alterations of T24 cells on flat and nanotubular TiO2 surfaces. Croat Med J 53(6):577–585PubMedPubMedCentralCrossRefGoogle Scholar
  13. Jerman UD, ME Kreft et al. (2015) "Epithelial-Mesenchymal Interactions in Urinary Bladder and Small Intestine and How to Apply Them in Tissue Engineering." Tissue Eng Part B RevGoogle Scholar
  14. Kreft ME, Di Giandomenico D et al (2010) Golgi apparatus fragmentation as a mechanism responsible for uniform delivery of uroplakins to the apical plasma membrane of uroepithelial cells. Biol Cell 102(11):593–607PubMedCrossRefGoogle Scholar
  15. Kreft ME, Robenek H (2012) Freeze-fracture replica immunolabelling reveals urothelial plaques in cultured urothelial cells. PLoS ONE 7(6):e38509PubMedPubMedCentralCrossRefGoogle Scholar
  16. Kreft ME, Romih R et al (2002) Antigenic and ultrastructural markers associated with urothelial cytodifferentiation in primary explant outgrowths of mouse bladder. Cell Biol Int 26(1):63–74PubMedCrossRefGoogle Scholar
  17. Kreft ME, Sterle M et al (2006) Distribution of junction- and differentiation-related proteins in urothelial cells at the leading edge of primary explant outgrowths. Histochem Cell Biol 125(5):475–485PubMedCrossRefGoogle Scholar
  18. Kreft ME, Sterle M et al (2005) Urothelial injuries and the early wound healing response: tight junctions and urothelial cytodifferentiation. Histochem Cell Biol 123(4–5):529–539PubMedCrossRefGoogle Scholar
  19. Kulkarni M, Flasker A et al (2015) Binding of plasma proteins to titanium dioxide nanotubes with different diameters. Int J Nanomedicine 10:1359–1373PubMedPubMedCentralGoogle Scholar
  20. Lee K, Mazare A et al (2014) One-dimensional titanium dioxide nanomaterials: nanotubes. Chem Rev 114(19):9385–9454PubMedCrossRefGoogle Scholar
  21. Liu H, Zhang Y et al (2012) Synthesis and characterization of TiO2@C core-shell nanowires and nanowalls via chemical vapor deposition for potential large-scale production. J Colloid Interface Sci 367(1):115–119PubMedCrossRefGoogle Scholar
  22. Luthen F, Lange R et al (2005) The influence of surface roughness of titanium on beta1- and beta3-integrin adhesion and the organization of fibronectin in human osteoblastic cells. Biomaterials 26(15):2423–2440PubMedCrossRefGoogle Scholar
  23. Mardis HK, Kroeger RM (1988) Ureteral stents. Materials. Urol Clin N Am 15(3):471–479Google Scholar
  24. McAninch JW (2005) Urethral reconstruction: a continuing challenge. J Urol 173(1):7–7PubMedCrossRefGoogle Scholar
  25. McManus M, Boland E et al (2007) Electrospun nanofibre fibrinogen for urinary tract tissue reconstruction. Biomed Mater 2(4):257–262PubMedCrossRefGoogle Scholar
  26. Park EJ, Shim HW et al (2013) Comparison of toxicity between the different-type TiO(2) nanowires in vivo and in vitro. Arch Toxicol 87(7):1219–1230PubMedCrossRefGoogle Scholar
  27. Park J, Bauer S et al (2009) Narrow window in nanoscale dependent activation of endothelial cell growth and differentiation on TiO2 nanotube surfaces. Nano Lett 9(9):3157–3164PubMedCrossRefGoogle Scholar
  28. Park J, Bauer S et al (2007) Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett 7(6):1686–1691PubMedCrossRefGoogle Scholar
  29. Pazoki M, Taghavinia N et al (2012) CVD-grown TiO2 particles as light scattering structures in dye sensitized solar cells. Rsc Adv 2:12278–12285Google Scholar
  30. Raya-Rivera A, Esquiliano DR et al (2011) Tissue-engineered autologous urethras for patients who need reconstruction: an observational study. Lancet 377(9772):1175–1182PubMedPubMedCentralCrossRefGoogle Scholar
  31. Romih R, Jezernik K (1996) Reorganisation of the urothelial luminal plasma membrane in the cyclophosphamide treated rats. Pflugers Arch 431(6 Suppl 2):R241–R242PubMedCrossRefGoogle Scholar
  32. Romih R, Koprivec D et al (2001) Restoration of the rat urothelium after cyclophosphamide treatment. Cell Biol Int 25(6):531–537PubMedCrossRefGoogle Scholar
  33. Romih R, Korosec P et al (2005) Differentiation of epithelial cells in the urinary tract. Cell Tissue Res 320(2):259–268PubMedCrossRefGoogle Scholar
  34. Selvaraj SK, Jursich G et al (2013) Design and implementation of a novel portable atomic layer deposition/chemical vapor deposition hybrid reactor. Rev Sci Instrum 84(9):095109PubMedCrossRefGoogle Scholar
  35. Southgate J, Cross W et al (2003) Bladder reconstruction—from cells to materials. Proc Inst Mech Eng H 217(4):311–316PubMedCrossRefGoogle Scholar
  36. Subramaniam R, Turner AM et al (2012) Seromuscular grafts for bladder reconstruction: extra-luminal demucosalisation of the bowel. Urology 80(5):1147–1150PubMedPubMedCentralCrossRefGoogle Scholar
  37. Vance RJ, Miller DC et al (2004) Decreased fibroblast cell density on chemically degraded poly-lactic-co-glycolic acid, polyurethane, and polycaprolactone. Biomaterials 25(11):2095–2103PubMedCrossRefGoogle Scholar
  38. Veranic P, Romih R et al (2004) What determines differentiation of urothelial umbrella cells? Eur J Cell Biol 83(1):27–34PubMedCrossRefGoogle Scholar
  39. Visnjar T, Kocbek P et al (2012) Hyperplasia as a mechanism for rapid resealing urothelial injuries and maintaining high transepithelial resistance. Histochem Cell Biol 137(2):177–186PubMedCrossRefGoogle Scholar
  40. Visnjar T, Kreft ME (2013) Air-liquid and liquid-liquid interfaces influence the formation of the urothelial permeability barrier in vitro. Vitro Cell Dev Biol Anim 49(3):196–204CrossRefGoogle Scholar
  41. Visnjar T, Kreft ME (2015) The complete functional recovery of chitosan-treated biomimetic hyperplastic and normoplastic urothelial models. Histochem Cell Biol 143(1):95–107PubMedCrossRefGoogle Scholar
  42. Wagner V, Dullaart A et al (2006) The emerging nanomedicine landscape. Nat Biotechnol 24(10):1211–1217PubMedCrossRefGoogle Scholar
  43. Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29(20):2941–2953PubMedCrossRefGoogle Scholar
  44. Yoo JJ, Olson J et al (2011) Regenerative medicine strategies for treating neurogenic bladder. Int Neurourol J 15(3):109–119PubMedPubMedCentralCrossRefGoogle Scholar
  45. Zhu X, Chen J et al (2004) Cellular reactions of osteoblasts to micron- and submicron-scale porous structures of titanium surfaces. Cells Tissues Organs 178(1):13–22PubMedCrossRefGoogle Scholar
  46. Zupancic D, Romih R et al (2014) Molecular ultrastructure of the urothelial surface: insights from a combination of various microscopic techniques. Microsc Res Tech 77(11):896–901PubMedCrossRefGoogle Scholar
  47. Zupančič, D., R. Romih, et al. (2014). "Molecular ultrastructure of the urothelial surface: Insights from a combination of various microscopic techniques." Microsc Res TechGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Roghayeh Imani
    • 1
    • 2
  • Meysam Pazoki
    • 3
  • Daša Zupančič
    • 4
  • Mateja Erdani Kreft
    • 4
  • Veronika Kralj-Iglič
    • 2
  • Peter Veranič
    • 4
  • Aleš Iglič
    • 1
  1. 1.Laboratory of Biophysics, Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Laboratory of Clinical Biophysics, Faculty of Health SciencesUniversity of LjubljanaLjubljanaSlovenia
  3. 3.Department of Chemistry, Ångström Laboratory, Physical ChemistryUppsala UniversityUppsalaSweden
  4. 4.Institute of Cell Biology, Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations